Numerical Simulation and Experimental Study on Vibration-Decreasing Function of the Barrier Holes

2014 ◽  
Vol 602-605 ◽  
pp. 53-59
Author(s):  
Zhen Lei ◽  
Qiang Kang ◽  
Ming Sheng Zhao ◽  
En An Chi

The finite-element software ANSYS/LS-DYNA was used to study the influence of various parameters of barrier hole on the vibration-decreasing effect, such as the diameter, spacing, depth, hole number and row number of barrier holes and distance from blast holes to barrier holes. The simulation study indicates that: vibration-enhancing area and vibration-decreasing area exist together behind the barrier holes; various parameters of barrier holes can apparently affect the location, range and results of the vibration-enhancing area and the vibration-decreasing area; With bigger diameter, shorter distance, larger number and deeper barrier holes, the better vibration-decreasing results will come out; Under the conditions of numerical simulation in this paper, the effect of double-row barrier holes are better than that of single-row barrier holes, and the effect of vibration-decreasing of triangle layout form is almost the same as rectangle layout form of barrier holes; the changing distance between vibration barrier holes and blast holes will have a fluctuating effect on the vibration-decreasing effect, thus we should select the best location of vibration barrier holes based on the actual engineering conditions in practical engineering. The largest vibration-decreasing ratio of the barrier holes we have obtained at the test site is 33.3%, which is successfully utilized in the production explosion, so we have verified effectiveness of vibration-decreasing effect of the barrier holes.

2011 ◽  
Vol 55-57 ◽  
pp. 193-196
Author(s):  
Xin Gui Zhang ◽  
Xiang Gang Kong ◽  
Zhen Song

In this paper, based on measured data of practical engineering, the characters of single short pile under the static vertical load action in the normal stratum combination model of dualistic structure has been simulated by using ABAQUS finite element software. Then simulated result and measured one has been compared and analyzed carefully. The analysis result indicated the applicability and reliability of ABAQUS finite element software in the simulation analysis of short pile. All these can provide some theoretical reference for design of short pile foundation.


2011 ◽  
Vol 189-193 ◽  
pp. 2539-2542
Author(s):  
Ji Ping Chen ◽  
Jian Qing Qian ◽  
Sheng Zhi Li

The limit drawing ratios of the steel sheets are studied by the numerical simulation using the finite element software PAM-STAMP 2G. The limit drawing ratios of the steel sheets are also measured by the practical Swift cup test. The results of the experiments and the simulations are compared and analyzed. The results show that the overall shapes of the deep drawing parts of the experiment and the simulation are roughly the same. The maximum deviation of limit drawing ratio values between the experimental results and the simulations for two steel sheets with various thicknesses is only 2.2%. The deviation of limit drawing ratio of steel sheet obtained through PAM-STAMP FEM software is small. The PAM-STAMP software is highly reliable for the steel sheet deep drawing simulation.


2018 ◽  
Vol 157 ◽  
pp. 02038
Author(s):  
Peter Pecháč ◽  
Milan Sága

This paper presents numerical simulation of blanking process for cold-rolled steel sheet metal. The problem was modeled using axial symmetry in commercial finite element software ADINA. Data obtained by experimental measurement were used to create multi-linear plastic material model for simulation. History of blanking force vs. tool displacement was obtained.


2022 ◽  
Vol 9 ◽  
Author(s):  
Chunyan Bao ◽  
Lingtao Zhan ◽  
Yingjie Xia ◽  
Yongliang Huang ◽  
Zhenxing Zhao

The creep slope is a dynamic development process, from stable deformation to instability failure. For the slope with sliding zone, it generally creeps along the sliding zone. If the sliding zone controlling the slope sliding does not have obvious displacement, and the slope has unexpected instability without warning, the harm and potential safety hazard are often much greater than the visible creep. Studying the development trend of this kind of landslide is of great significance to slope treatment and landslide early warning. Taking Xiashan village landslide in Huishan Town, Xinchang County, Zhejiang Province as an example, the landslide point was determined by numerical simulation in 2006. Generally, the landslide is a typical long-term slow deformation towards the free direction. Based on a new round of investigation and monitoring, this paper shows that there are signs of creeping on the surface of the landslide since 2003, and there is no creep on the deep sliding surface. The joint fissures in the landslide area are relatively developed, and rainfall infiltration will soften the soft rock and soil layer and greatly reduce its stability. This paper collects and arranges the rainfall data of the landslide area in recent 30 years, constructs the slope finite element model considering rainfall conditions through ANSYS finite element software, and carries out numerical simulation stability analysis. The results show that if cracks appear below or above the slope’s sliding surface, or are artificially damaged, the sliding surface may develop into weak cracks. Then, the plastic zone of penetration is offset; In the case of heavy rain, the slope can unload itself under the action of rainfall. At this time, the slope was unstable and the landslide happened suddenly.


2012 ◽  
Vol 236-237 ◽  
pp. 632-635
Author(s):  
Yue Sun ◽  
Yue Nan Chen ◽  
Zhi Yun Wang

In two-dimensional space, an elasto-plastic finite element computational model was established to simulate inner support for excavation on the basis of the general-purpose finite element software ABAQUS. The soil was assumed to be a uniform and normally consolidated clay layer and strut was discreted by spring element. Compared with published case study, it can be concluded that FEM software AQAQUS can present one reliable simulation progress of inner support for excavation.


2014 ◽  
Vol 989-994 ◽  
pp. 982-985
Author(s):  
Jun Chen ◽  
Xiao Jun Ye

ANSYS-LS/DYNA 3D finite element software projectile penetrating concrete target three-dimensional numerical simulation , has been the target characteristics and destroy ballistic missile trajectory , velocity and acceleration and analyze penetration and the time between relationship , compared with the test results , the phenomenon is consistent with the simulation results. The results show that : the destruction process finite element software can better demonstrate concrete tests revealed the phenomenon can not be observed , estimated penetration depth and direction of the oblique penetration missile deflection .


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaowei Wang ◽  
Yingmin Li ◽  
Weiju Song ◽  
Jun Xu

Based on the stiffness limitations of the midtower in multitower cable-stayed bridges, a new stiffening system (tie-down cables) is proposed in this paper. The sag effects and wind-induced responses can be reduced with the proposed system because tie-down cables are short and aesthetic compared with traditional stiffening cables. The results show that the stiffening effect of tie-down cables is better than that of traditional stiffening cables in controlling the displacement and internal force of the bridge based on a static experiment and finite element analysis. Therefore, the proposed system can greatly improve the overall stiffness of a bridge, and its stiffening effect is better than that of traditional stiffening cables in controlling the displacement and internal force. The results provide a reference for the application of such systems in practical engineering.


2011 ◽  
Vol 90-93 ◽  
pp. 37-40 ◽  
Author(s):  
Lu Bo Meng ◽  
Tian Bin Li ◽  
Zheng Duan

To investigate the transient electromagnetic method of response characteristics in the tunnel geological prediction, the finite element numerical simulation of unfavorable geological body of different location, different resistivity sizes, different shapes, and different volume size were carried out by ANSYS finite element software. The results show that secondary electromagnetic field of different location of unfavorable geological body have same decay rate, when detection distance from 30m to 70m, transient electromagnetic responses are strongest, followed distance from 10m to 30m and from 70m to 90m. The shape, volume and resistivity of unfavorable geological body have strong influence on transient electromagnetic response, unfavorable geological body more sleek, the greater the volume and the smaller the resistivity of unfavorable geological body, the secondary electromagnetic field decay slower.


2012 ◽  
Vol 502 ◽  
pp. 46-50
Author(s):  
Guang Wu Ao ◽  
Ming Gang Shen ◽  
Zhen Shan Zhang ◽  
Li Li Hong

In this paper, by using the commercial finite-element software of ProCAST, unidirectional solidification processes in 23t steel ingot were simulated. Emphasis is placed on analysis of required time for complete solidification of steel ingot and temperature distribution about ingot and side wall during the solidification process. By comparing simulation values and measured values of side wall during the solidification process, the simulated results conclusively demonstrate that our developed model is feasible and valuable.


Author(s):  
Gurumurthy Kagita ◽  
Gudimella G. S. Achary ◽  
Mahesh B. Addala ◽  
Balaji Srinivasan ◽  
Penchala S. K. Pottem ◽  
...  

Abstract Mechanical damage in subsea pipelines in the form of local dents / buckles due to excessive bending deformation may severely threaten their structural integrity. A dent / buckle has two significant effects on the pipeline integrity. Notably, residual stresses are set up as result of the plastic deformation and stress concentrations are created due to change in pipe geometry caused by the denting / buckling process. To assess the criticality of a dent / buckle, which often can be associated with strain induced flaws in the highly deformed metal, integrity assessment is required. The objective of this paper is to evaluate the severity of dent / buckle in a 48” subsea pipeline and to make the rerate, repair or replacement decision. This paper presents a Level 3 integrity assessment of a subsea pipeline dent / buckle with metal loss, reported in in-line inspection (ILI), in accordance with Fitness-For-Service Standard API 579-1/ASME FFS-1. In this paper, the deformation process that caused the damage (i.e. dent / buckle) with metal loss is numerically simulated using ILI data in order to determine the magnitude of permanent plastic strain developed and to evaluate the protection against potential failure modes. For numerical simulation, elastic-plastic finite element analyses (FEA) are performed considering the material as well as geometric non-linearity using general purpose finite element software ABAQUS/CAE 2017. Based on the numerical simulation results, the integrity assessment of dented / buckled subsea pipeline segment with metal loss has been performed to assess the fitness-for-service at the operating loads.


Sign in / Sign up

Export Citation Format

Share Document