Lipopeptide stimulation of MHC class I-restricted memory cytotoxic T lymphocytes from equine infectious anemia virus-infected horses

Vaccine ◽  
2002 ◽  
Vol 20 (13-14) ◽  
pp. 1809-1819 ◽  
Author(s):  
Sherritta L Ridgely ◽  
Travis C McGuire
1998 ◽  
Vol 72 (12) ◽  
pp. 9612-9620 ◽  
Author(s):  
Wei Zhang ◽  
Scott M. Lonning ◽  
Travis C. McGuire

ABSTRACT Most equine infectious anemia virus (EIAV)-infected horses have acute clinical disease, but they eventually control the disease and become lifelong carriers. Cytotoxic T lymphocytes (CTL) are considered an important immune component in the control of infections with lentiviruses including EIAV, but definitive evidence for CTL in the control of disease in carrier horses is lacking. By using retroviral vector-transduced target cells expressing different Gag proteins and overlapping synthetic peptides of 16 to 25 amino acids, peptides containing at least 12 Gag CTL epitopes recognized by virus-stimulated PBMC from six long-term EIAV-infected horses were identified. All identified peptides were located within Gag matrix (p15) and capsid (p26) proteins, as no killing of target cells expressing p11 and p9 occurred. Each of the six horses had CTL recognizing at least one Gag epitope, while CTL from one horse recognized at least eight different Gag epitopes. None of the identified peptides were recognized by CTL from all six horses. Two nonamer peptide epitopes were defined from Gag p26; one (18a) was likely restricted by class I equine leukocyte alloantigen A5.1 (ELA-A5.1) molecules, and the other (28b-1) was likely restricted by ELA-A9 molecules. Sensitization of equine kidney target cells for CTLm killing required 10 nM peptide 18a and 1 nM 28b-1. The results demonstrated that diverse CTL responses against Gag epitopes were generated in long-term EIAV-infected horses and indicated that ELA-A class I molecules were responsible for the diversity of CTL epitopes recognized. This information indicates that multiple epitopes or whole proteins will be needed to induce CTL in horses with different ELA-A alleles in order to evaluate their role in controlling EIAV.


2004 ◽  
Vol 5 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Travis C. McGuire ◽  
Darrilyn G. Fraser ◽  
Robert H. Mealey

AbstractCytotoxic T lymphocytes (CTL) are associated with virus control in horses infected with equine infectious anemia virus (EIAV). Early in infection, control of the initial viremia coincides with the appearance of CTL and occurs before the appearance of neutralizing antibody. In carrier horses, treatment with immunosuppressive drugs results in viremia before a change in serum neutralizing antibody occurs. Clearance of initial viremia caused by other lentiviruses, including human immunodeficiency virus-1 and simian immunodeficiency virus, is also associated with CTL and not neutralizing antibody. In addition, depletion of CD8+cells prior to infection of rhesus monkeys with simian immunodeficiency prevents clearance of virus and the same treatment of persistently infected monkeys results in viremia. Cats given adoptive transfers of lymphocytes from vaccinated cats were protected and the protection was MHC-restricted, occurred in the absence of antiviral humoral immunity, and correlated with the transfer of cells with feline immunodeficiency virus-specific CTL and T-helper lymphocyte activities. Therefore, a lentiviral vaccine, including one for EIAV, needs to induce CTL. Based on initial failures to induce CTL to EIAV proteins by any means other than infection, we attempted to define an experimental system for the evaluation of methods for CTL induction. CTL epitopes restricted by the ELA-A1 haplotype were identified and the MHC class I molecule presenting these peptides was identified. This was done by expressing individual MHC class I molecules from cDNA clones in target cells. The target cells were then pulsed with peptides and used with effector CTL stimulated with the same peptides. In a preliminary experiment, immunization of three ELA-A1 haplotype horses with an Env peptide restricted by this haplotype resulted in CTL in peripheral blood mononuclear cells (PBMC) which recognized the Env peptide and virus-infected cells, but the CTL response was transient. Nevertheless there was significant protection against clinical disease following EIAV challenge of these immunized horses when compared with three control horses given the same virus challenge. These data indicated that responses to peptides in immunized horses needed to be enhanced. Optimal CTL responses require help from CD4+T lymphocytes, and experiments were done to identify EIAV peptides which stimulated CD4+T lymphocytes in PBMC from infected horses with different MHC class II types. Two broadly cross-reactive Gag peptides were identified which stimulated only an interferon γ response by CD4+T lymphocytes, which indicated a T helper 1 response is needed for CTL stimulation. Such peptides should facilitate CTL responses; however, other problems in inducing protection against lentiviruses remain, the most significant of them being EIAV variants that can escape both CTL and neutralizing antibody. A possible solution to CTL escape variants is the induction of high-avidity CTL to multiple EIAV epitopes.


Virology ◽  
1997 ◽  
Vol 238 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Travis C McGuire ◽  
Wei Zhang ◽  
Melissa T Hines ◽  
Pamela J Henney ◽  
Katherine M Byrne

1993 ◽  
Vol 177 (2) ◽  
pp. 317-327 ◽  
Author(s):  
S R Nahill ◽  
R M Welsh

Polyclonal stimulation of CD8+ cytotoxic T lymphocytes (CTL) occurs during infection with many viruses including those not known to transform CTL or encode superantigens. This polyclonal CTL response includes the generation of high levels of allospecific CTL directed against many class I haplotypes. In this report we investigated whether the allospecific CTL generated during an acute lymphocytic choriomeningitis virus (LCMV) infection of C57BL/6 mice were stimulated specifically by antigen recognition or nonspecifically by polyclonal mechanisms possibly involving lymphokines or superantigens. An examination of the ability of different strains of mice to induce high levels of CTL specific for a given alloantigen showed that most, but not all, strains generated high levels of allospecific CTL, and that their abilities to generate them mapped genetically to the major histocompatibility complex locus, exclusive of the class II region. This indicated that the virus-induced allospecific CTL generation was independent of the class II allotype, and mice depleted of CD4+ cells generated allospecific CTL, indicating independence of class II-CD4+ cell interactions and resulting CD4+ cell-secreted lymphokines. FACS staining with a variety of V beta-binding antibodies did not show a superantigen-like depletion or enrichment of any tested V beta + subset during infection. Several experiments provided evidence in support of direct stimulation of CD8+ cells via the T cell receptor: (a) both virus- and allo-specific killing were enriched within a given V beta subpopulation; (b) relative CTL precursor frequencies against different class I alloantigens changed during the course of virus infection; (c) the relative levels of virus-induced, allospecific CTL-mediated lysis at day 8 after infection did not parallel the CTL precursor frequencies before infection; and (d) limiting dilution analyses of day 8 LCMV-infected spleen cells stimulated by virus-infected syngeneic peritoneal exudate cells (PEC) revealed not only the expected virus-specific CTL clones, but also a high frequency of clones that were cross-reactive with allogeneic and virus-infected syngeneic targets. In addition to the virus cross-reactive allospecific CTL clones, virus-infected PEC also stimulated the generation of some allospecific clones that did not lyse virus-infected fibroblasts. Surprisingly, LCMV-infected PEC were much more efficient at stimulating allospecific CTL clones from day 8 LCMV-infected splenocytes than were allogeneic stimulators. These results indicate that at least part of the polyclonal allospecific CTL response elicited by acute virus infection is a consequence of the selective expansion of many clones of allospecific CTL which cross-react with virus-infected cells.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1909-1914 ◽  
Author(s):  
RA Koup ◽  
JL Sullivan ◽  
PH Levine ◽  
D Brettler ◽  
A Mahr ◽  
...  

Abstract Major histocompatibility (MHC)-restricted, human immunodeficiency virus type one (HIV-1)-specific, cytotoxic T lymphocytes (CTLs) were detected in the peripheral blood mononuclear cells (PBMCs) of HIV-1-infected individuals. Using a system of autologous B and T lymphoblastoid cell lines infected with recombinant vaccinia vectors (VVs) expressing HIV-1 gene products, we were able to detect HIV-1-specific cytolytic responses in the PBMCs of 88% of HIV-1-seropositive hemophiliac patients in the absence of in vitro stimulation. These cytolytic responses were directed against both HIV-1 envelope and gag gene products. The responses were resistant to natural killer (NK) cell depletion and were inhibited by monoclonal antibodies (MoAbs) to the T cell receptor, CD8 surface antigens, and MHC class I antigens, suggesting a classical MHC class I restricted, virus-specific CTL response.


Sign in / Sign up

Export Citation Format

Share Document