The induction of systemic and mucosal immune responses following the subcutaneous immunization of mature adult mice: characterization of the antibodies in mucosal secretions of animals immunized with antigen formulations containing a vitamin D3 adjuvant

Vaccine ◽  
1999 ◽  
Vol 17 (23-24) ◽  
pp. 3050-3064 ◽  
Author(s):  
Elena Y. Enioutina ◽  
Dino Visic ◽  
Zell A. McGee ◽  
Raymond A. Daynes
2014 ◽  
Vol 21 (4) ◽  
pp. 457-462 ◽  
Author(s):  
Juan Huang ◽  
Renyong Jia ◽  
Mingshu Wang ◽  
Bing Shu ◽  
Xia Yu ◽  
...  

ABSTRACTDuck plague (DP) is a severe disease caused by DP virus (DPV). Control of the disease is recognized as one of the biggest challenges in avian medicine. Vaccination is an efficient way to control DPV, and an attenuated vaccine is the main routine vaccine. The attenuated DPV vaccine strain CHa is a modified live vaccine, but the systemic and mucosal immune responses induced by this vaccine have been poorly understood. In this study, the immunogenicity and efficacy of the vaccine were evaluated after subcutaneous immunization of ducks. CD4+and CD8+T cells were counted by flow cytometry, and humoral and mucosal Ig antibodies were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that high levels of T cells and Ig antibodies were present postimmunization and that there were more CD4+T cells than CD8+T cells. Titers of humoral IgG were higher than those of humoral IgA. Local IgA was found in each sample, whereas local IgG was found only in the spleen, thymus, bursa of Fabricius, harderian gland, liver, bile, and lung. In a protection assay, the attenuated DPV vaccine completely protected ducks against 1,000 50% lethal doses (LD50) of the lethal DPV strain CHv via oral infection. These data suggest that this subcutaneous vaccine elicits sufficient systemic and mucosal immune responses against lethal DPV challenge to be protective in ducks. This study provides broad insights into understanding the immune responses to the attenuated DPV vaccine strain CHa through subcutaneous immunization in ducks.


FEBS Letters ◽  
2017 ◽  
Vol 591 (16) ◽  
pp. 2417-2425 ◽  
Author(s):  
Katsuhisa Kurogi ◽  
Yoichi Sakakibara ◽  
Masahito Suiko ◽  
Ming-Cheh Liu

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Casandra Panea ◽  
Ruoyu Zhang ◽  
Jeffrey VanValkenburgh ◽  
Min Ni ◽  
Christina Adler ◽  
...  

AbstractTissue-resident γδ intraepithelial lymphocytes (IELs) orchestrate innate and adaptive immune responses to maintain intestinal epithelial barrier integrity. Epithelia-specific butyrophilin-like (Btnl) molecules induce perinatal development of distinct Vγ TCR+ IELs, however, the mechanisms that control γδ IEL maintenance within discrete intestinal segments are unclear. Here, we show that Btnl2 suppressed homeostatic proliferation of γδ IELs preferentially in the ileum. High throughput transcriptomic characterization of site-specific Btnl2-KO γδ IELs reveals that Btnl2 regulated the antimicrobial response module of ileal γδ IELs. Btnl2 deficiency shapes the TCR specificities and TCRγ/δ repertoire diversity of ileal γδ IELs. During DSS-induced colitis, Btnl2-KO mice exhibit increased inflammation and delayed mucosal repair in the colon. Collectively, these data suggest that Btnl2 fine-tunes γδ IEL frequencies and TCR specificities in response to site-specific homeostatic and inflammatory cues. Hence, Btnl-mediated targeting of γδ IEL development and maintenance may help dissect their immunological functions in intestinal diseases with segment-specific manifestations.


2021 ◽  
Vol 7 (7) ◽  
pp. 559
Author(s):  
Yaping Wang ◽  
Yuhang Fu ◽  
Yuanyuan He ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mudassar Iqbal ◽  
...  

Development phases are important in maturing immune systems, intestinal functions, and metabolism for the construction, structure, and diversity of microbiome in the intestine during the entire life. Characterizing the gut microbiota colonization and succession based on age-dependent effects might be crucial if a microbiota-based therapeutic or disease prevention strategy is adopted. The purpose of this study was to reveal the dynamic distribution of intestinal bacterial and fungal communities across all development stages in yaks. Dynamic changes (a substantial difference) in the structure and composition ratio of the microbial community were observed in yaks that matched the natural aging process from juvenile to natural aging. This study included a significant shift in the abundance and proportion of bacterial phyla (Planctomycetes, Firmicutes, Bacteroidetes, Spirochaetes, Tenericutes, Proteobacteria, and Cyanobacteria) and fungal phyla (Chytridiomycota, Mortierellomycota, Neocallimastigomycota, Ascomycota, and Basidiomycota) across all development stages in yaks. As yaks grew older, variation reduced, and diversity increased as compared to young yaks. In addition, the intestine was colonized by a succession of microbiomes that coalesced into a more mature adult, including Ruminococcaceae_UCG-005, Romboutsia, Prevotellaceae_UCG-004, Blautia, Clostridium_sensu_stricto_1, Ruminococcus_1, Ruminiclostridium_5, Rikenellaceae_RC9_gut_group, Alloprevotella, Acetitomaculum, Lachnospiraceae_NK3A20_group, Bacteroides, Treponema_2, Olsenella, Escherichia-Shigella, Candidatus_Saccharimonas, and fungal communities Mortierella, Lomentospora, Orpinomyces, and Saccharomyces. In addition, microorganisms that threaten health, such as Escherichia-Shigella, Mortierella, Lomentospora and Hydrogenoanaerobacterium, Corynebacterium_1, Trichosporon, and Coprinellus, were enriched in young and old yaks, respectively, although all yaks were healthy. The significant shifts in microflora composition and structure might reflect adaptation of gut microbiome, which is associated with physicochemical conditions changes and substrate availability in the gut across all development periods of yaks.


Sign in / Sign up

Export Citation Format

Share Document