Nonlinear bearing stiffness parameter estimation in flexible rotor–bearing systems using Volterra and Wiener approach

2001 ◽  
Vol 16 (2) ◽  
pp. 137-157 ◽  
Author(s):  
A.A. Khan ◽  
N.S. Vyas
Author(s):  
Cristinel Mares ◽  
Cecilia Surace

Abstract In this paper, the possibility of updating the finite element model of a rotor-bearing system by estimating the bearing stiffness and damping coefficients from a few measured Frequency Response Functions using a Genetic Algorithm is investigated. The issues of identifiability and parameters estimation errors, computational costs and algorithm tuning are addressed. A simulated example of a flexible rotor supported by orthotropic bearings is used for illustrating the method.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mohammad Miraskari ◽  
Farzad Hemmati ◽  
Mohamed S. Gadala

To determine the bifurcation types in a rotor-bearing system, it is required to find higher order derivatives of the bearing forces with respect to journal velocity and position. As closed-form expressions for journal bearing force are not generally available, Hopf bifurcation studies of rotor-bearing systems have been limited to simple geometries and cavitation models. To solve this problem, an alternative nonlinear coefficient-based method for representing the bearing force is presented in this study. A flexible rotor-bearing system is presented for which bearing force is modeled with linear and nonlinear dynamic coefficients. The proposed nonlinear coefficient-based model was found to be successful in predicting the bifurcation types of the system as well as predicting the system dynamics and trajectories at spin speeds below and above the threshold speed of instability.


2017 ◽  
Vol 34 (7) ◽  
pp. 2379-2395 ◽  
Author(s):  
Reza Ebrahimi ◽  
Mostafa Ghayour ◽  
Heshmatallah Mohammad Khanlo

Purpose This paper aims to present bifurcation analysis of a magnetically supported coaxial rotor model in auxiliary bearings, which includes gyroscopic moments of disks and geometric coupling of the magnetic actuators. Design/methodology/approach Ten nonlinear equations of motion were solved using the Runge–Kutta method. The vibration responses were analyzed using dynamic trajectories, power spectra, Poincaré maps, bifurcation diagrams and the maximum Lyapunov exponent. The analysis was carried out for different system parameters, namely, the inner shaft stiffness, inter-rotor bearing stiffness, auxiliary bearing stiffness and disk position. Findings It was shown that dynamics of the system could be significantly affected by varying these parameters, so that the system responses displayed a rich variety of nonlinear dynamical phenomena, including quasi-periodicity, chaos and jump. Next, some threshold values were provided with regard to the design of appropriate parameters for this system. Therefore, the proposed work can provide an effective means of gaining insights into the nonlinear dynamics of coaxial rotor–active magnetic bearing systems with auxiliary bearings in the future. Originality/value This paper considered the influences of the inner shaft stiffness, inter-rotor bearing stiffness, auxiliary bearing stiffness and disk position on the bifurcation behavior of a magnetically supported coaxial rotor system in auxiliary bearings.


Author(s):  
Tsu-Wei Lin ◽  
Yuan Kang ◽  
Chun-Chieh Wang ◽  
Chuan-Wei Chang ◽  
Chih-Pin Chiang

This study utilizes genetic algorithm to minimize the condition number of Hermitian matrix of influence coefficient (HMIC) to reduce the computation errors in balancing procedure. Then, the optimal locations of balancing planes and sensors would be obtained as fulfilling optimization. The finite element method is used to determine the steady-state response of flexible rotor-bearing systems. The optimization improves the balancing accuracy, which can be validated by the experiments of balancing a rotor kit.


Author(s):  
Nuntaphong Koondilogpiboon ◽  
Tsuyoshi Inoue

Abstract In this study, the difference in dynamic behavior of the rotor-bearing system supported by the bearing model that considers both lateral and angular whirling motions of the journal (model A), and the model that considers only lateral whirling motion (model B) is investigated. The rotor model consists of a slender shaft, a large disk and two small disks supported by a self-aligning ball bearing and an axial groove journal bearing of L/D = 0.6. Three positions of the large disk: 410, 560, and 650 mm measured from the ball bearing, are investigated. Numerical integration of the rotor-bearing system which is modally reduced to the 1st forward mode is performed at above the onset speed of instability until either a steady state journal orbit or contact between the journal and the bearing occurs to identify the bifurcation type. Numerical results using model A indicate subcritical bifurcation with the contact between the journal and the inboard side of the bearing in all three large disk positions, whereas those of model B indicate subcritical bifurcation when the large disk position is at 410 mm, and supercritical bifurcation is observed in the other two cases. Lastly, the experiments at the same three large disk positions are performed. Subcritical bifurcation with the contact between the journal and the inboard side of the bearing is observed in all large disk positions, which conforms with the calculation result of model A. As a result, model A is essential in nonlinear vibration analysis of a highly flexible rotor system.


Sign in / Sign up

Export Citation Format

Share Document