Contribution to modelling the electron density and temperature in the disturbed low latitude topside ionosphere

1997 ◽  
Vol 20 (9) ◽  
pp. 1741-1744 ◽  
Author(s):  
L. Třísková ◽  
J. Šmilauer ◽  
V. Truhlik ◽  
V.V. Afonin

The instruments which measure electron density and temperature are quite separate and independent in operation, but on account of the limitations in power supply and telemetry data rate the two experiments share the same power lines and some data channels.


2006 ◽  
Vol 24 (5) ◽  
pp. 1333-1342 ◽  
Author(s):  
M. Milla ◽  
E. Kudeki

Abstract. The ALTAIR UHF radar was used in an incoherent scatter experiment to observe the low-latitude ionosphere during the Equis 2 rocket campaign. The measurements provided the first high-resolution electron density maps of the low-latitude D- and E-region in the Pacific sector and also extended into the F-region and topside ionosphere. Although the sampling frequency was well below the Nyquist frequency of F-region returns, we were able to estimate Te / Ti ratio and infer unbiased electron density estimates using a regularized inversion technique described here. The technique exploits magnetic aspect angle dependence of ISR cross-section for Te>Ti.


2000 ◽  
Vol 18 (7) ◽  
pp. 789-798 ◽  
Author(s):  
G.J. Bailey ◽  
Y. Z. Su ◽  
K.-I. Oyama

Abstract. Observations made by the Hinotori satellite have been analysed to determine the yearly variations of the electron density and electron temperature in the low-latitude topside ionosphere. The observations reveal the existence of an equinoctial asymmetry in the topside electron density at low latitudes, i.e. the density is higher at one equinox than at the other. The asymmetry is hemisphere-dependent with the higher electron density occurring at the March equinox in the Northern Hemisphere and at the September equinox in the Southern Hemisphere. The asymmetry becomes stronger with increasing latitude in both hemispheres. The behaviour of the asymmetry has no significant longitudinal and magnetic activity variations. A mechanism for the equinoctial asymmetry has been investigated using CTIP (coupled thermosphere ionosphere plasmasphere model). The model results reproduce the observed equinoctial asymmetry and suggest that the asymmetry is caused by the north-south imbalance of the thermosphere and ionosphere at the equinoxes due to the slow response of the thermosphere arising from the effects of the global thermospheric circulation. The observations also show that the relationship between the electron density and electron temperature is different for daytime and nighttime. During daytime the yearly variation of the electron temperature has negative correlation with the electron density, except at magnetic latitudes lower than 10°. At night, the correlation is positive.Key words: Ionosphere (equatorial ionosphere; ionosphere-atmosphere interactions; plasma temperature and density)


2011 ◽  
Vol 116 (A12) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yoshihiro Kakinami ◽  
Shigeto Watanabe ◽  
Jann-Yenq Liu ◽  
Nanan Balan

1989 ◽  
Vol 50 (C1) ◽  
pp. C1-559-C1-564
Author(s):  
F. P. KEENAN ◽  
R. BARNSLEY ◽  
J. DUNN ◽  
K. D. EVANS ◽  
S. M. McCANN ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paola De Michelis ◽  
Giuseppe Consolini ◽  
Alessio Pignalberi ◽  
Roberta Tozzi ◽  
Igino Coco ◽  
...  

AbstractThe present work focuses on the analysis of the scaling features of electron density fluctuations in the mid- and high-latitude topside ionosphere under different conditions of geomagnetic activity. The aim is to understand whether it is possible to identify a proxy that may provide information on the properties of electron density fluctuations and on the possible physical mechanisms at their origin, as for instance, turbulence phenomena. So, we selected about 4 years (April 2014–February 2018) of 1 Hz electron density measurements recorded on-board ESA Swarm A satellite. Using the Auroral Electrojet (AE) index, we identified two different geomagnetic conditions: quiet (AE < 50 nT) and active (AE > 300 nT). For both datasets, we evaluated the first- and second-order scaling exponents and an intermittency coefficient associated with the electron density fluctuations. Then, the joint probability distribution between each of these quantities and the rate of change of electron density index was also evaluated. We identified two families of plasma density fluctuations characterized by different mean values of both the scaling exponents and the considered ionospheric index, suggesting that different mechanisms (instabilities/turbulent processes) can be responsible for the observed scaling features. Furthermore, a clear different localization of the two families in the magnetic latitude—magnetic local time plane is found and its dependence on geomagnetic activity levels is analyzed. These results may well have a bearing about the capability of recognizing the turbulent character of irregularities using a typical ionospheric plasma irregularity index as a proxy.


Sign in / Sign up

Export Citation Format

Share Document