Suppressed oxidant-induced apoptosis in cadmium adapted alveolar epithelial cells and its potential involvement in cadmium carcinogenesis

Toxicology ◽  
2000 ◽  
Vol 147 (3) ◽  
pp. 215-228 ◽  
Author(s):  
J.D Eneman ◽  
R.J Potts ◽  
M Osier ◽  
G.S Shukla ◽  
C.H Lee ◽  
...  
2013 ◽  
Vol 305 (1) ◽  
pp. L33-L41 ◽  
Author(s):  
Bruce D. Uhal ◽  
Hang Nguyen ◽  
MyTrang Dang ◽  
Indiwari Gopallawa ◽  
Jing Jiang ◽  
...  

Earlier work showed that apoptosis of alveolar epithelial cells (AECs) in response to endogenous or xenobiotic factors is regulated by autocrine generation of angiotensin (ANG) II and its counterregulatory peptide ANG1–7. Mutations in surfactant protein C (SP-C) induce endoplasmic reticulum (ER) stress and apoptosis in AECs and cause lung fibrosis. This study tested the hypothesis that ER stress-induced apoptosis of AECs might also be regulated by the autocrine ANGII/ANG1–7 system of AECs. ER stress was induced in A549 cells or primary cultures of human AECs with the proteasome inhibitor MG132 or the SP-C BRICHOS domain mutant G100S. ER stress activated the ANGII-generating enzyme cathepsin D and simultaneously decreased the ANGII-degrading enzyme ACE-2, which normally generates the antiapoptotic peptide ANG1–7. TAPI-2, an inhibitor of ADAM17/TACE, significantly reduced both the activation of cathepsin D and the loss of ACE-2. Apoptosis of AECs induced by ER stress was measured by assays of mitochondrial function, JNK activation, caspase activation, and nuclear fragmentation. Apoptosis induced by either MG132 or the SP-C BRICHOS mutant G100S was significantly inhibited by the ANG receptor blocker saralasin and was completely abrogated by ANG1–7. Inhibition by ANG1–7 was blocked by the specific mas antagonist A779. These data show that ER stress-induced apoptosis is mediated by the autocrine ANGII/ANG1–7 system in human AECs and demonstrate effective blockade of SP-C mutation-induced apoptosis by ANG1–7. They also suggest that therapeutic strategies aimed at administering ANG1–7 or stimulating ACE-2 may hold potential for the management of ER stress-induced fibrotic lung disorders.


FEBS Letters ◽  
2007 ◽  
Vol 581 (22) ◽  
pp. 4148-4152 ◽  
Author(s):  
J. Zhang ◽  
A.J. Ghio ◽  
W. Chang ◽  
O. Kamdar ◽  
G.D. Rosen ◽  
...  

1999 ◽  
Vol 277 (6) ◽  
pp. L1245-L1250 ◽  
Author(s):  
Rongqi Wang ◽  
Alex Zagariya ◽  
Edmund Ang ◽  
Olivia Ibarra-Sunga ◽  
Bruce D. Uhal

Recent works from this laboratory demonstrated potent inhibition of Fas-induced apoptosis in alveolar epithelial cells (AECs) by the angiotensin-converting enzyme (ACE) inhibitor captopril [B. D. Uhal, C. Gidea, R. Bargout, A. Bifero, O. Ibarra-Sunga, M. Papp, K. Flynn, and G. Filippatos. Am. J. Physiol. 275 ( Lung Cell. Mol. Physiol. 19): L1013–L1017, 1998] and induction of dose-dependent apoptosis in AECs by purified angiotensin (ANG) II [R. Wang, A. Zagariya, O. Ibarra-Sunga, C. Gidea, E. Ang, S. Deshmukh, G. Chaudhary, J. Baraboutis, G. Filippatos and B. D. Uhal. Am. J. Physiol. 276 ( Lung Cell. Mol. Physiol. 20): L885–L889, 1999]. These findings led us to hypothesize that the synthesis and binding of ANG II to its receptor might be involved in the induction of AEC apoptosis by Fas. Apoptosis was induced in the AEC-derived human lung carcinoma cell line A549 or in primary AECs isolated from adult rats with receptor-activating anti-Fas antibodies or purified recombinant Fas ligand, respectively. Apoptosis in response to either Fas activator was inhibited in a dose-dependent manner by the nonthiol ACE inhibitor lisinopril or the nonselective ANG II receptor antagonist saralasin, with maximal inhibitions of 82 and 93% at doses of 0.5 and 5 μg/ml, respectively. In both cell types, activation of Fas caused a significant increase in the abundance of mRNA for angiotensinogen (ANGEN) that was unaffected by saralasin. Transfection with antisense oligonucleotides against ANGEN mRNA inhibited the subsequent induction of Fas-stimulated apoptosis by 70% in A549 cells and 87% in primary AECs (both P < 0.01). Activation of Fas increased the concentration of ANG II in the serum-free extracellular medium 3-fold in primary AECs and 10-fold in A549 cells. Apoptosis in response to either Fas activator was completely abrogated by neutralizing antibodies specific for ANG II ( P < 0.01), but isotype-matched nonimmune immunoglobulins had no significant effect. These data indicate that the induction of AEC apoptosis by Fas requires a functional renin-angiotensin system in the target cell. They also suggest that therapeutic control of AEC apoptosis is feasible through pharmacological manipulation of the local renin-angiotensin system.


2013 ◽  
Vol 11 (4) ◽  
pp. 274-279 ◽  
Author(s):  
Liguo Wei ◽  
Hidenori Yamaguchi ◽  
Reiri Takeuchi ◽  
Hiroko Matsumoto ◽  
Koh Shibutani

Sign in / Sign up

Export Citation Format

Share Document