Differences in heat sensitivity between normal and acute myeloid leukemic stem cells: Feasibility of hyperthermic purging of leukemic cells from autologous stem cell grafts

2003 ◽  
Vol 31 (5) ◽  
pp. 421-427 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Rita Setroikromo ◽  
Gera Kamps ◽  
Harm H. Kampinga ◽  
Edo Vellenga
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4324-4324
Author(s):  
Alexander W. Hauswirth ◽  
Stefan FLorian ◽  
Maria-Theresa Krauth ◽  
Gerit-Holger Schernthaner ◽  
Edgar Selzer ◽  
...  

Abstract The cell surface antigen Siglec-3 = CD33 is becoming increasingly important as target of therapy in acute myeloid leukemia (AML). In particular, a conjugate consisting of the humanized CD33 antibody P67.6 (gemtuzumab) and the cytostatic drug calicheamicin has been developed for clinical use and was found to work as an effective antileukemic agent (Mylotarg®) in patients with CD33+ AML. In normal myelopoiesis, expression of CD33 is restricted to advanced stages of differentiation, whereas primitive stem cells do not express CD33 (Siglec-3). In line with this notion, CD33-targeting therapy is a non-myeloablative approach. In the present study, we asked whether leukemic stem cells in patients with AML express CD33. For this purpose, a multicolor-staining technique was applied in eleven patients with AML. Leukemic stem cells were defined as CD34+/CD38−/CD123+ cells. In all patients in whom the majority of myeloblasts expressed CD33 (=CD33+ AML, n=8), the AML progenitor cells reacted with the CD33 antibody P67.6. Repopulation experiments utilizing NOD/SCID mice confirmed that the AML stem cells in these patients reside within the CD33+ subpopulation of leukemic cells. Moreover, AML stem cells (CD34+/CD38−/CD123+ cells) highly purified (>98% purity) from patients with (CD33+) AML by cell sorting, were found to express CD33 mRNA in RT-PCR analyses. To demonstrate that AML stem cells can also reside within the CD33-negative fraction of the AML clone, we purified CD33-negative cells in a patient with AML in whom a majority of leukemic stem cells were found to lack CD33. In this particular patient, the CD33-negative cells were found to repopulate NOD/SCID mice with leukemias in the same way as the entire leukemic clone did. The CD33 antigen was neither detectable on CD34+/CD38− cells in the normal bone marrow nor on leukemic stem cells in patients with CD33-negative AML. In summary, our data show that leukemic stem cells in patients with CD33+ AML frequently express the target receptor CD33. This observation is in favor of novel treatment concepts employing CD33-targeting antibodies (Mylotarg®) in acute myeloid leukemia.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A465-A465
Author(s):  
Catherine Sabatos-Peyton ◽  
Tyler Longmire ◽  
Lisa Baker ◽  
Nidhi Patel ◽  
Anne-Sophie Wavreille ◽  
...  

BackgroundTIM-3 is expressed on leukemic stem cells (LSCs) and blasts in AML,1 2 and TIM-3 expression on MDS blasts correlates with disease progression.3 Functional evidence for TIM-3 in AML was established with an anti-TIM-3 antibody which inhibited engraftment and development of human AML in immuno-deficient murine hosts.1 TIM-3 promotes an autocrine stimulatory loop via the TIM-3/Galectin-9 interaction, supporting LSC self-renewal.4 In addition to its cell-autonomous role on LSCs/blasts, TIM-3 also has a critical role in immune system regulation, in adaptive (CD4+ and CD8+ T effector cells, regulatory T cells) and innate (macrophages, dendritic cells, NK cells) immune responses.5 MBG453 is a high-affinity, humanized anti-TIM-3 IgG4 antibody (Ab) (stabilized hinge, S228P), which blocks the binding of TIM-3 to phosphatidylserine (PtdSer). Recent results from a multi-center, open label phase Ib dose-escalation study (NCT03066648) in patients with high-risk MDS and no prior hypomethylating agent therapy evaluating MBG453 in combination with decitabine demonstrated encouraging preliminary efficacy with an overall response rate of 58%,6 and MBG453 combined with azacitidine also showed encouraging response rates.7 Preclinical experiments were undertaken to define the mechanism of action of the hypomethylating agent and anti-TIM-3 combination.MethodsTHP-1 cells (a human monocytic AML cell line) were pre-treated with decitabine and co-cultured with anti-CD3 activated healthy human donor peripheral blood mononuclear cells (PBMCs) in an Incucyte-based assay to measure cell killing. The ability of MBG453 to mediate antibody-dependent cellular phagocytosis (ADCP) was measured by determining the phagocytic uptake of an engineered TIM-3-overexpressing Raji cell line in the presence of MBG453 by phorbol 12-myristate 13-acetate (PMA)-activated THP-1 cells. Patient-derived AML xenograft studies were undertaken in immune-deficient murine hosts to evaluate the combination of decitabine and MBG453.ResultsMBG453 was determined to partially block the TIM-3/Galectin-9 interaction in a plate-based MSD (Meso Scale Discovery) assay, supported by a crystal structure of human TIM-3.8 Pre-treatment of THP-1 cells with decitabine enhanced sensitivity to immune-mediated killing in the presence of MBG453. MBG453 was determined to mediate modest ADCP, relative to controls. MBG453 did not enhance the anti-leukemic activity of decitabine in patient-derived xenograft studies in immuno-deficient hosts.ConclusionsTaken together, these results support both direct anti-leukemic effects and immune-mediated modulation by MBG453. Further studies are ongoing to determine: (1) whether MBG453 can mediate physiologically relevant ADCP of TIM-3-expressing leukemic cells; and (2) the potential of MBG453 to impact the autocrine feedback loop of TIM-3/Galectin-9.Ethics ApprovalThe human tissue used in these studies was under the Novartis Institutes of BioMedical Research Ethics Board IRB, Approval Number 201252867.ReferencesKikushige Y, Shima T, Takayanagi S, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 2010;7(6):708–717.Jan M, Chao MP, Cha AC, et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci USA 2011; 108(12): 5009–5014.Asayama T, Tamura H, Ishibashi M, et al. Functional expression of Tim-3 on blasts and clinical impact of its ligand galectin-9 in myelodysplastic syndromes. Oncotarget 2017;8(51): 88904–88917.Kikushige Y, Miyamoto T, Yuda J, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 2015; 17(3):341–352.Acharya N, Sabatos-Peyton C, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer 2020; 8(1):e000911.Borate U, Esteve J, Porkka K, et al. Phase Ib Study of the Anti-TIM-3 Antibody MBG453 in combination with decitabine in patients with high-risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Blood 2019;134 (Supplement_1):570.Borate U, Esteve J, Porkka K, et al. Abstract S185: Anti-TIM-3 antibody MBG453 in combination with hypomethylating agents (HMAs) in patients (pts) with high-risk myelodysplastic syndrome (HR-MDS) and acute myeloid leukemia (AML): a Phase 1 study. EHA 2020.Sabatos-Peyton C. MBG453: A high affinity, ligand-blocking anti-TIM-3 monoclonal Ab. AACR 2016.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1231-1231
Author(s):  
Andrew Lewis ◽  
Chun Shik Park ◽  
Monica Puppi ◽  
H. Daniel Lacorazza

Acute myeloid leukemia (AML) develops from sequential mutations which transform hematopoietic stem and progenitor cells (HSPCs) in the bone marrow into leukemic stem cells (LSCs) which drive the progression of frank leukemia. Especially poor outcomes in elderly patients coupled with frequent relapse have led to a dismal 28.3% 5-year survival, warranting the need for innovative therapeutic approaches. Successful targeted therapy will selectively eliminate LSCs, which possess distinct characteristics enabling self-renewal and chemotherapeutic resistance, while sparing normal HSPCs. We theorized that KLF4, a zinc finger transcription factor, maintains key self-renewal pathways in LSCs due to its known importance in preserving stemness in embryonic and cancer stem cells. KLF4 alters gene transcription through its activating and repressing domains as well as remodeling chromatin through various epigenetic mechanisms, and work from our lab has demonstrated that loss of KLF4 in leukemia driven by the BCR-ABL fusion oncogene results in depletion of LSCs (Park et. al in revision) while enhancing self-renewal of hematopoietic stem cells. To address this hypothesis, mice featuring floxed Klf4 gene (Klf4fl/fl) were crossed with transgenic Vav-iCre mice to produce mice with hematopoietic-specific deletion of Klf4 (Klf4Δ/Δ). The murine t(9;11)(p21;q23) translocation (MLL-AF9 or MA9) transduction model has previously been shown to reflect clinical disease attributes, and represents the MLL-rearranged human patient subset with particularly poor prognosis and relatively higher levels of KLF4. Lin−Sca-1+c-Kit+ (LSK) cells from Klf4fl/fl and Klf4Δ/Δ mice were transduced with retrovirus containing MA9 and GFP reporter and transplanted into lethally-irradiated wild-type (WT) mice to generate trackable Klf4fl/fl and Klf4Δ/ΔAMLs. Recipients of both MA9Klf4fl/fl and Klf4Δ/Δ cells developed a rapid expansion of leukemic cells with myeloid immunophenotype by flow cytometric analysis (CD11b+Gr-1+; 68-91%), characterized as AML with latency of approximately 44.5 days. To quantify the defect induced by loss of KLF4 in the leukemic stem cell population, we performed secondary transplant of multiple limiting-dilution cell doses of primary transformed leukemic bone marrow from moribund mice. Klf4Δ/Δ AML mice exhibited significantly improved survival in all dose-cohorts, in some cases presenting no detectable leukemic cells at completion of monitoring (225 days). Limiting dilution analysis using the ELDA online software tool demonstrated a 7-fold reduction from 1 in 513 in Klf4fl/fl to 1 in 3836 in Klf4Δ/Δ AML bone marrow cells capable of leukemic initiation function (p<0.001), a hallmark of LSCs. Using the ERCre-tamoxifen inducible deletion system, Klf4 deletion 15 days post-transplant of AML significantly improved survival of Klf4Δ/Δ mice compared to controls, demonstrating KLF4 promotes maintenance of disease. Plating of leukemic bone marrow from Klf4Δ/Δ mice in methylcellulose medium revealed a reduction in serial colony-forming ability, further supporting a defect in self-renewal. To further determine the mechanisms connected to this reduction in functional LSCs, we isolated leukemic granulocyte-macrophage progenitors (L-GMPs), a population previously reported to be highly enriched for functional LSCs and representing a comparable cellular subset in human clinical samples, from Klf4fl/fl and Klf4Δ/Δ AMLs and conducted RNA-Seq to identify potential transcriptional targets of KLF4 with therapeutic promise. Taken together, these data suggest a novel function of the stemness transcription factor KLF4 in the preservation of leukemic stem cells in AML. Whereas prior models based on KLF4 expression in human cell lines and bulk AML samples have proposed a tumor suppressive role, our work suggests KLF4 supports expansion of leukemic cells with a stem cell phenotype and serial assays suggest an effect on LSC self-renewal. Further studies are being conducted to define the transcriptional and epigenetic mechanisms governing these findings. Understanding the molecular changes induced by loss of KLF4 presents promise for development of new therapies selectively targeting LSCs. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1846-1846
Author(s):  
Jessica Roos ◽  
Astrid Fischer ◽  
Dieter Steinhilber ◽  
Hubert Serve ◽  
Oliver Ottmann ◽  
...  

Abstract Abstract 1846 Chromosomal translocations such as t(15;17), t(8,21) or t(6;9) lead to the formation of chimeric genes encoding the PML/RAR, AML-1/ETO or DEK/CAN fusion proteins (FP). These FP are able to induce and to maintain acute myeloid leukemia (AML) by both blocking terminal differentiation of early hematopoietic progenitors and increasing the self renewal potential of the leukemic stem cells (LSC). LSCs are potential therapeutic targets and it is of great importance to elucidate which signaling pathways control their development and maintenance. Recently it has been shown that the presence of the 5-Lipoxygenase activity (5-LO) is indispensable for the induction and the maintenance of the BCR/ABL induced CML-like disease in mice. Its depletion or inhibition impairs the LSCs in the CML-like disease. 5-LO is the key enzyme in the biosynthesis pathway of leukotrienes, a group of proinflammatory lipid mediators derived from arachidonic acid. Furthermore we have shown that Sulindac sulfide, a dual Cycloxygenase/5 –LO inhibitor, was able, at 5-LO inhibitory concentrations, to interfere with the stem cell capacity of PML/RAR-positive LSC. It also overcame the differentiation block in PML/RAR-positive HSC. To disclose whether a “leukemic stem cell therapy” in AML is feasible if based on selectively targeting the 5-LO, we used two different selective 5-LO inhibitors, Zileuton and CJ-13,610, in a PML/RAR- and DEK/CAN-positive leukemia model. Zileuton, an anti-asthmatic drug, is a reversible inhibitor of 5-LO activity which leads to the inhibition of leukotrienes (LTB4, LTC4, LTD4, and LTE4) formation. CJ-13,610 is novel non redox, non iron chelating 5-LO inhibitor. As stem cell models we used Sca-1+/lin-murine HSC retrovirally transduced either with PML/RAR or DEK/CAN. Here we report that both Zileuton and CJ -13,610 at clinically feasible concentrations of 0.3 – 3μM interfered with the aberrant replating efficiency of PML/RAR and DEK/CAN expressing HSCs; ii.) inhibited the short-term stem cell (ST-HSC) capacity of PMR/RAR- and DEK/CAN-positive HSCs as assessed by colony forming unit-spleen day 12 assays in lethally irradiated recipient mice; and iii.) reduced the frequency of long-term HSC in a long term competitive repopulation stem cell assays. The effects of both compounds were not due related to the induction of apoptosis. Interestingly, on normal control HSC both Zileuton and CJ-13,610 exhibited a “paradox” effect by increasing ST-HSC as well as LT-HSC capacity. Our here presented data establish the inhibition of 5-LO by selective inhibitors as a feasible approach of molecular stem cell therapy in AML. Furthermore it strongly suggest an important role of leukotrienes for the maintenance of leukemic stem cells. The exact mechanisms by which the inhibition of 5-LO interferes with the LSC have still to be disclosed. Disclosures: Off Label Use: The use of anti-inflammatory drugs such as Zileuton and CJ-13610 as novel approach for stem cell treatment in AML is discussed.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1884-1884
Author(s):  
Alissa R. Kahn ◽  
Kimberly A. Hartwell ◽  
Peter G. Miller ◽  
Benjamin L. Ebert ◽  
Todd R. Golub ◽  
...  

Abstract Abstract 1884 Acute myeloid leukemia (AML) is a common and aggressive hematologic malignancy affecting both children and adults which continues to have high mortality rates as well as high morbidity from toxic therapies. New treatments are needed to improve cure rates and decrease morbidity. A niche-based high throughput screen done in a murine system identified candidate small molecules potentially toxic to leukemic stem cells (LSCs) while sparing normal hematopoietic stem cells (HSCs) and bone marrow stroma (Hartwell KA, Miller, PG et al., in preparation). One such compound, SB-216641, demonstrated dose-dependent activity against leukemia in both a cell autonomous and non-autonomous manner, by modifying niche–based support. SB-216641 is a selective serotonin receptor antagonist specific for the 5-HT1B receptor, highlighting a pathway not previously investigated in the context of AML or leukemia stem cell biology. We examined the effects of this candidate small molecule on 7 human primary AML samples. CD34+ cells were isolated from these samples with immunomagnetic beads. Using the colony forming assay to assess kill of progenitor cells, all samples had ≥99% cell kill at 25 μM (10 times the IC-50 found in the murine system). We then assessed the compound's effect on LSCs using the cobblestone area forming cell (CAFC) assay, a standard in vitro stem cell assay. The leukemic cells were pulse treated for 18 hours and washed to remove residual SB-216641 prior to placement on MS-5 murine stroma and therefore only the direct effect on the leukemic cells was measured in this assay. CAFCs were read out at week 5, or week 2 when the sample was FLT3-ITD+ (Chung KY et al, Blood 2005, Vol 105, 77–84). We first tested five samples at 25 μM. All samples formed cobblestone areas in the control setting (46–200 CAFCs/106 cells plated). Four samples had no CAFC formation with SB-216641 and the remaining sample had >95% decrease in CAFC formation. We then performed serial dilutions using the CAFC assay in the human primary samples as well as in HSCs derived from cord blood to obtain the IC-50 for human AML and to ensure that our differential cell kill of LSCs versus normal HSCs held true in the human samples. IC-50 for the human primary leukemias was found to be 630 nanomolar and at 10 μM all leukemic samples were fully killed with 100% survival of normal human HSCs [see figure 1]. As a confirmatory study, using HL60 and U937 human AML cell lines transduced with GFP-luciferase, 500 cells were preincubated with SB-216641 at 25 μM or DMSO control and then injected IV into Nod Scid IL2R-gamma null (NSG) mice and imaged at 5 weeks. In both cell lines, the control mice had engraftment and the mice that received treated cells had no engraftment. HL60 cells were then preincubated with SB-216641 at lower doses (10 and 5 μM) and injected into NSG mice and imaged at 3 weeks. Again, the control mice had engraftment and the mice that received treated cells had no engraftment.Figure 1.Figure 1. 5-HT1B receptor antagonists have not previously been known to be active against AML or leukemic stem cells. Some hematopoietic cells including platelets express serotonin receptors and T-cells specifically have been found to express the 5-HT1b receptor. Selective 5-HT1B receptor antagonists have found to have apoptotic effects in vitro against cell lines of other cancers and may be involved in MAP kinase and P13K/Akt signaling pathways. SB-216641 is a highly promising compound which warrants further investigation. Its high toxicity to LSCs and sparing of normal HSCs make it appealing for possible clinical use in the future. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5309-5309
Author(s):  
Manal M W Elmasry ◽  
Alaa Elhaddad

Abstract Background: Acute myeloblastic leukemia (AML) can be viewed as newly formed, abnormal hemopoeitic tissue initiated by few leukemic stem cells (LSCs). Recognizing the LSC and identifying their behavior, plays a pivotal role in the approach of a targeted therapy.Colony-stimulating factor 1 (CSF-1), also known as M-CSF, is a protein ligand that acts on the CSF1R promotes mononuclear phagocytes survival, proliferation and differentiation. Aim of the work: Defining the self-renewing [Thy1-, CD34+, CD38-] LICs in AML cases before and after induction chemotherapy as a predictor for relapse and to determine how CSF1R (Fms) and CD34 markers affect the growth and survival of human leukemic cells in the CD38- Thy1- population. Patients and methods: This study was carried out on 30 samples from the peripheral blood of adult patients with de-novo acute myeloid leukemia. The majority of the patients were monocytic AML Samples were sorted into four populations (Fms+CD34-, Fms+CD34+, Fms-CD34+ and Fms-CD34-) according to the surface markers of the cells. Cells were cultured on mouse stromal cells transfected with a plasmid containing human CSF-1. Samples were cultured using Iscove's modified Dulbecc's medium (IMDM).The cultures were assessed for survival of leukemic cells in days. Results: The mean survival in days of the cells was 13.9 before chemotherapy and 14.1 after chemotherapy. The difference in growth was insignificant (p>0.05). The Fms-CD34+ population in all but two samples tested had the longest survival time in culture. Conclusion: Our results suggest that leukemic stem cells may survive chemotherapy mainly due to their quiescence. Human CSF-1 was shown to increase the number of leukemic cells in co-culture with mouse stroma after 5 weeks. A novel leukemic stem cell (Fms-CD34+) has been identified and is the cell responsible for the growth and maintenance of the leukemic bulk. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 20 (23) ◽  
pp. 5826 ◽  
Author(s):  
Tobias Gluexam ◽  
Alexander M. Grandits ◽  
Angela Schlerka ◽  
Chi Huu Nguyen ◽  
Julia Etzler ◽  
...  

The neuropeptide CGRP, acting through the G-protein coupled receptor CALCRL and its coreceptor RAMP1, plays a key role in migraines, which has led to the clinical development of several inhibitory compounds. Recently, high CALCRL expression has been shown to be associated with a poor prognosis in acute myeloid leukemia (AML). We investigate, therefore, the functional role of the CGRP-CALCRL axis in AML. To this end, in silico analyses, human AML cell lines, primary patient samples, and a C57BL/6-based mouse model of AML are used. We find that CALCRL is up-regulated at relapse of AML, in leukemic stem cells (LSCs) versus bulk leukemic cells, and in LSCs versus normal hematopoietic stem cells. CGRP protects receptor-positive AML cell lines and primary AML samples from apoptosis induced by cytostatic drugs used in AML therapy, and this effect is inhibited by specific antagonists. Furthermore, the CGRP antagonist olcegepant increases differentiation and reduces the leukemic burden as well as key stem cell properties in a mouse model of AML. These data provide a basis for further investigations into a possible role of CGRP-CALCRL inhibition in the therapy of AML.


2021 ◽  
Vol 11 ◽  
Author(s):  
Noortje van Gils ◽  
Fedor Denkers ◽  
Linda Smit

Standard induction chemotherapy, consisting of an anthracycline and cytarabine, has been the first-line therapy for many years to treat acute myeloid leukemia (AML). Although this treatment induces complete remissions in the majority of patients, many face a relapse (adaptive resistance) or have refractory disease (primary resistance). Moreover, older patients are often unfit for cytotoxic-based treatment. AML relapse is due to the survival of therapy-resistant leukemia cells (minimal residual disease, MRD). Leukemia cells with stem cell features, named leukemic stem cells (LSCs), residing within MRD are thought to be at the origin of relapse initiation. It is increasingly recognized that leukemia “persisters” are caused by intra-leukemic heterogeneity and non-genetic factors leading to plasticity in therapy response. The BCL2 inhibitor venetoclax, combined with hypomethylating agents or low dose cytarabine, represents an important new therapy especially for older AML patients. However, often there is also a small population of AML cells refractory to venetoclax treatment. As AML MRD reflects the sum of therapy resistance mechanisms, the different faces of treatment “persisters” and LSCs might be exploited to reach an optimal therapy response and prevent the initiation of relapse. Here, we describe the different epigenetic, transcriptional, and metabolic states of therapy sensitive and resistant AML (stem) cell populations and LSCs, how these cell states are influenced by the microenvironment and affect treatment outcome of AML. Moreover, we discuss potential strategies to target dynamic treatment resistance and LSCs.


Sign in / Sign up

Export Citation Format

Share Document