Metallurgical improvement of a lead/copper flotation stage by pulp potential control

2000 ◽  
Vol 59 (1) ◽  
pp. 69-83 ◽  
Author(s):  
A Uribe-Salas ◽  
T.E Martı́nez-Cavazos ◽  
F.C Nava-Alonso ◽  
J Méndez-Nonell ◽  
C Lara-Valenzuela
2014 ◽  
Vol 675-677 ◽  
pp. 1451-1454 ◽  
Author(s):  
Gui Ying Zhou ◽  
Wen Juan Li ◽  
Yong Chen ◽  
Yong Sheng Song

The tailing in a large lead-zinc-iron-sulfur multi-metallic mine has rich reservation in variety of metallic minerals. It has been difficult to recover because of all kinds of reasons. The challenges faced by lead-zinc ore beneficiation are, low grade and recovery of lead and zinc concentrate for fine disseminated grain size, high oxidation rate and close intergrowth. This paper presents a Pulp Potential Control Flotation by stages technique to improve the flotation performance of the lead-zinc ores. In the electrochemical potential controlling flotation processing, using DDTC as collector, the separation potential range of galena and sphalerite with pyrrhotite can be achieved. Flotation circuit of lead-zinc-silver tailing ore was achieved.


2002 ◽  
Vol 41 (4) ◽  
pp. 391-397 ◽  
Author(s):  
F. Nava-Alonso ◽  
T. Pecina-Treviño ◽  
R. Pérez-Garibay ◽  
A. Uribe-Salas

2008 ◽  
Vol 58 ◽  
pp. 147-153
Author(s):  
Wan Zhong Yin ◽  
Li Rong Zhang ◽  
Ya Zhuo Ding

In this paper, potential control flotation of molybdenite has been investigated which focus on the effect of pulp potential on flotation performance. Optimum flotation conditions of molybdenite are determined through tests: optimum pulp potential is 190mv~300mv, dosage of sodium sulfide is 6kg/t.The potential control flotation does not use sodium silicate which solved the problem of tailing settlement difficulties. The mechanism of potential control flotation shows that S0 is the main factor that achieves potential control flotation of molybdenite.


Author(s):  
N.J. Tao ◽  
J.A. DeRose ◽  
P.I. Oden ◽  
S.M. Lindsay

Clemmer and Beebe have pointed out that surface structures on graphite substrates can be misinterpreted as biopolymer images in STM experiments. We have been using electrochemical methods to react DNA fragments onto gold electrodes for STM and AFM imaging. The adsorbates produced in this way are only homogeneous in special circumstances. Searching an inhomogeneous substrate for ‘desired’ images limits the value of the data. Here, we report on a reversible method for imaging adsorbates. The molecules can be lifted onto and off the substrate during imaging. This leaves no doubt about the validity or statistical significance of the images. Furthermore, environmental effects (such as changes in electrolyte or surface charge) can be investigated easily.


2001 ◽  
Author(s):  
M. J. Mandell ◽  
V. A. Davis ◽  
B. M. Gardner ◽  
J. M. Hilton ◽  
I. Katz

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 343
Author(s):  
Carolina Ballesteros ◽  
Alda Romero ◽  
María Colomba Castro ◽  
Sofía Miranda ◽  
Jan Bergmann ◽  
...  

Pseudococcus calceolariae, the citrophilous mealybug, is a species of economic importance. Mating disruption (MD) is a potential control tool. During 2017–2020, trials were conducted to evaluate the potential of P. calceolariae MD in an apple and a tangerine orchard. Two pheromone doses, 6.32 g/ha (2017–2018) and 9.45 g/ha (2019–2020), were tested. The intermediate season (2018–2019) was evaluated without pheromone renewal to study the persistence of the pheromone effect. Male captures in pheromone traps, mealybug population/plant, percentage of infested fruit at harvest and mating disruption index (MDI) were recorded regularly. In both orchards, in the first season, male captures were significantly lower in MD plots compared to control plots, with an MDI > 94% in the first month after pheromone deployment. During the second season, significantly lower male captures in MD plots were still observed, with an average MDI of 80%. At the third season, male captures were again significant lower in MD than control plots shortly after pheromone applications. In both orchards, population by visual inspection and infested fruits were very low, without differences between MD and control plots. These results show the potential use of mating disruption for the control of P. calceolariae.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 701
Author(s):  
Lorenzo Tonina ◽  
Giulia Zanettin ◽  
Paolo Miorelli ◽  
Simone Puppato ◽  
Andrew G. S. Cuthbertson ◽  
...  

The strawberry blossom weevil (SBW), Anthonomus rubi, is a well-documented pest of strawberry. Recently, in strawberry fields of Trento Province (north-east Italy), new noteworthy damage on fruit linked to SBW adults was observed, combined with a prolonged adult activity until the autumn. In this new scenario, we re-investigated SBW biology, ecology, monitoring tools, and potential control methods to develop Integrated Pest Management (IPM) strategies. Several trials were conducted on strawberry in the laboratory, field and semi-natural habitats. The feeding activity of adult SBW results in small deep holes on berries at different stages, causing yield losses of up to 60%. We observed a prolonged survival of newly emerged adults (>240 days) along with their ability to sever flower buds without laying eggs inside them in the same year (one generation per year). SBW adults were present in the strawberry field year-round, with movement between crop and no crop habitats, underlying a potential role of other host/feeding plants to support its populations. Yellow sticky traps combined with synthetic attractants proved promising for both adult monitoring and mass trapping. Regarding control, adhesive tapes and mass trapping using green bucket pheromone traps gave unsatisfactory results, while the high temperatures provided by the black fabric, the periodic removal of severed buds or adults and Chlorpyrifos-methyl application constrained population build-up. The findings are important for the development of an IPM strategy.


Sign in / Sign up

Export Citation Format

Share Document