Application of three-layer model analysis to single-component two-phase critical flow through a converging nozzle: comparison of the experimental results for steam-water mixture and carbon dioxide with the calculated results

1997 ◽  
Vol 23 (7) ◽  
pp. 110
1971 ◽  
Vol 93 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Robert E. Henry ◽  
Hans K. Fauske

The critical flow of one-component, two-phase mixtures through convergent nozzles is investigated and discussed including considerations of the interphase heat, mass, and momentum transfer rates. Based on the experimental results of previous investigators, credible assumptions are made to approximate these interphase processes which lead to a transcendental expression for the critical pressure ratio as a function of the stagnation pressure and quality. A solution to this expression also yields a prediction for the critical flow rate. Based on the experimental results of single-phase compressible flow through orifices and short tubes, the two-phase model is extended to include such geometries. The models are compared with steam-water, cryogenic, and alkali-metal experimental data.


Author(s):  
E. de Langre ◽  
J. L. Riverin ◽  
M. J. Pettigrew

The time dependent forces resulting from a two-phase air-water mixture flowing in an elbow and a tee are measured. Their magnitudes as well as their spectral contents are analyzed. Comparison is made with previous experimental results on similar systems. For practical applications a dimensionless form is proposed to relate the characteristics of these forces to the parameters defining the flow and the geometry of the piping.


Author(s):  
Chang Hyeon Lim ◽  
Gokul Pathikonda ◽  
Sandeep Pidaparti ◽  
Devesh Ranjan

Abstract Supercritical carbon dioxide (sCO2) power cycles have the potential to offer a higher plant efficiency than the traditional Rankine superheated/supercritical steam cycle or Helium Brayton cycles. The most attractive characteristic of sCO2 is that the fluid density is high near the critical point, allowing compressors to consume less power than conventional gas Brayton cycles and maintain a smaller turbomachinery size. Despite these advantages, there still exist unsolved challenges in design and operation of sCO2 compressors near the critical point. Drastic changes in fluid properties near the critical point and the high compressibility of the fluid pose several challenges. Operating a sCO2 compressor near the critical point has potential to produce two phase flow, which can be detrimental to turbomachinery performance. To mimic the expanding regions of compressor blades, flow through a converging-diverging nozzle is investigated. Pressure profiles along the nozzle are recorded and presented for operating conditions near the critical point. Using high speed shadowgraph images, onset and growth of condensation is captured along the nozzle. Pressure profiles were calculated using a one-dimensional homogeneous equilibrium model and compared with experimental data.


Author(s):  
W. G. Sim ◽  
Njuki W. Mureithi

The analytical model (Sim; 2007), to predict the two-phase damping ratio for upward cross-flow through horizontal tube bundles, has been evaluated. The damping model was formulated, based on Feenstra’s model (2000) for void fraction and various models (homogeneous, Levy, Martinelli-Nelson and Marchaterre) for two-phase friction multiplier. The analytical results of drag coefficient on a cylinder and two-phase Euler number were compared with the experimental results by Sim-Mureithi (2010). The factor, a relation between frictional pressure drop and the hydraulic drag coefficients, could be determined by considering experimental results. The two-phase damping ratios, given by the analytical model, were compared with existing experimental results. It was found that the model, based on Marchaterre’s model, is suitable for air-water mixture while the Martinelli-Nelson’s model for steam-water and Freon mixtures. The two-phase damping ratio is independent on pitch mass flux for air-water mixture, but it is more or less influenced by the mass flux for steam-water/Freon(134) mixtures. The two-phase damping ratios, given by the present model, agree well with experimental results for a sufficiently wide range of pitch mass ratio, quality and p/d ratios.


Author(s):  
Dhruv C. Hoysall ◽  
Khoudor Keniar ◽  
Srinivas Garimella

Multiphase flow phenomena in single micro- and minichannels have been widely studied. Characteristics of two-phase flow through a large array of microchannels are investigated here. An air-water mixture is used to represent the two phases flowing through a microchannel array representative of those employed in practical applications. Flow distribution of the air and water flow across 52 parallel microchannels of 0.3 mm hydraulic diameter is visually investigated using high speed photography. Two microchannel configurations are studied and compared, with mixing features incorporated into the second configuration. Slug and annular flow regimes are observed in the channels. Void fractions and interfacial areas are calculated for each channel from these observations. The flow distribution is tracked at various lengths along the microchannel array sheets. Statistical distributions of void fraction and interfacial area along the microchannel array are measured. The design with mixing features yields improved flow distribution. Void fraction and interfacial area change along the length of the second configuration, indicating a change in fluid distribution among the channels. The void fraction and interfacial area results are used to predict the performance of different microchannel array configurations for heat and mass transfer applications. Results from this study can help inform the design of compact thermal-fluid energy systems.


Sign in / Sign up

Export Citation Format

Share Document