The Two-Phase Critical Flow of One-Component Mixtures in Nozzles, Orifices, and Short Tubes

1971 ◽  
Vol 93 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Robert E. Henry ◽  
Hans K. Fauske

The critical flow of one-component, two-phase mixtures through convergent nozzles is investigated and discussed including considerations of the interphase heat, mass, and momentum transfer rates. Based on the experimental results of previous investigators, credible assumptions are made to approximate these interphase processes which lead to a transcendental expression for the critical pressure ratio as a function of the stagnation pressure and quality. A solution to this expression also yields a prediction for the critical flow rate. Based on the experimental results of single-phase compressible flow through orifices and short tubes, the two-phase model is extended to include such geometries. The models are compared with steam-water, cryogenic, and alkali-metal experimental data.

1961 ◽  
Vol 83 (2) ◽  
pp. 145-154 ◽  
Author(s):  
William G. Steltz

The results of a digital computer and analytic study of the critical flow of a compressible fluid are presented in this paper. The expanding flow of a fluid in a single-phase region as well as the expansion of a fluid to a two-phase region is considered and described by analytic expressions relating choking velocity, critical pressure ratio, and flow per unit area characteristics. A comparison is made of the analytic results which assume a constant value of the isentropic expansion exponent, with the digital computer results using the actual properties of steam. All analyses assume the fluid to be in thermodynamic equilibrium. A skeleton Mollier diagram is presented for steam showing the exponent in the wet and superheated regions. The choking velocity is presented in plot form as a function of the inlet conditions as well as state point conditions; critical pressure ratio is presented as a function of inlet conditions. The critical flow per unit area is presented in the form of a factor K plotted versus inlet conditions; this factor K when multiplied by inlet pressure produces the desired value of critical flow.


Author(s):  
Se Won Kim ◽  
Sang Kyoon Lee ◽  
Hee Cheon No

The effect of non-condensable gas on the subcooled water critical flow in a safety valve is investigated experimentally at various subcoolings with 3 different disk lifts. To evaluate its effect on the critical pressure ratio and critical flow rate, three parameters are considered: the ratios of outlet pressure to inlet pressure, the subcooling to inlet temperature, and the gas volumetric flow to water volumetric flow are 0.15–0.23, 0.07–0.12, and 0–0.8, respectively. It turns out that the critical pressure ratio is mainly dependent on the subcooling, and its dependency on the gas fraction and the pressure drop is relatively small. When the ratio of nitrogen gas volumetric flow to water volumetric flow becomes lower than 20%, the subcooled water critical flow rate is decreased about 10% compare to the water flow rate of without non-condensable gas. However, it maintains a constant value after the ratio of gas volumetric flow to water volumetric flow becomes higher than 20%. The subcooled water critical flow correlation, which considers subcooling, disc lift, backpressure, and non-condensable gas, shows good agreement with the total present experimental data with the root mean square error 8.17%.


1964 ◽  
Vol 86 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Robert M. Reimer

A method of computing the critical flow function, critical pressure ratio, and critical temperature ratio is presented. Use is made of the NBS Circular 564 tabulated data of the speed of sound, enthalpy, and compressibility. Computations are made for dry real air at stagnation temperature from 60 to 100 F and stagnation pressure from zero to 300 psia. The change in the flow function and ratios is 0.9, 0.5, and 0.4 percent, respectively, over this range. Calculations are also performed at elevated pressure and temperature.


Author(s):  
D Xin ◽  
J Feng ◽  
X Jia ◽  
X Peng

This article presents the investigation on the oil—gas two-phase leakage flow through the micro gaps in oil-injected compressors and provides a new way of investigating the internal leakage process in the compressors. The oil—gas leakage rates were measured through the micro gaps of various gap sizes, the volume ratios of oil to gas, and pressure differences/ratios; and the flow patterns reflecting the flow characteristics were observed by using a high-speed video. The experimental results showed that the leakage flowrate was significantly related to the flow patterns in the gap, which were similar to those found in the existing literature and agreed well with the predicted ones by the Weber number. The gas leakage flowrate through the gap increased rapidly with the increased pressure ratio until the pressure ratio reached the critical pressure ratio, which ranged from 1.8 to 2.7. At the critical pressure ratio, the flow pattern transition from churn flow to annular flow occurred, resulting in gas leakage driven by a different sealing mechanism. As the volume ratio of oil to gas increased by 0.5 per cent, the gas leakage flowrate decreased by 77 per cent.


2016 ◽  
Vol 100 ◽  
pp. 372-380 ◽  
Author(s):  
M. Ziad Saghir ◽  
Amirhossein Ahadi ◽  
Tooraj Yousefi ◽  
Bahram Farahbakhsh

Author(s):  
Masahiro Ishibashi

It is shown that critical flow Venturi nozzles need time intervals, i.e., more than five hours, to achieve steady state conditions. During these intervals, the discharge coefficient varies gradually to reach a value inherent to the pressure ratio applied. When a nozzle is suddenly put in the critical condition, its discharge coefficient is trapped at a certain value then afterwards approaches gradually to the inherent value. Primary calibrations are considered to have measured the trapped discharge coefficient, whereas nozzles in applications, where a constant pressure ratio is applied for a long time, have a discharge coefficient inherent to the pressure ratio; inherent and trapped coefficients can differ by 0.03–0.04%.


Sign in / Sign up

Export Citation Format

Share Document