Reduction of murine mammary tumor metastasis by conjugated linoleic acid

2000 ◽  
Vol 150 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Neil E. Hubbard ◽  
Debora Lim ◽  
Lauri Summers ◽  
Kent L. Erickson
Author(s):  
Wm. J. Arnold ◽  
J. Russo ◽  
H. D. Soule ◽  
M. A. Rich

Our studies of mammary tumor virus have included the application of the unlabeled antibody enzyme method of Sternberger to mammary tumor derived mouse cells in culture and observation with an electron microscope. The method avoids the extravagance of covalent binding of indicator molecules (horseradish peroxidase) with precious antibody locator molecules by relying instead upon specific antibody-antigen linkages. Our reagents included: Primary Antibody, rabbit anti-murine mammary tumor virus (MuMTV) which was antiserum 113 AV-2; Secondary Antibody, goat anti-rabbit IgG gamma chain (Cappel Laboratories); andthe Indicator, rabbit anti-horseradish peroxidase - horseradish peroxidase complex (PAP) (Cappel Labs.). Dilutions and washes were made in 0.05 M Tris 0.15 M saline buffered to pH 7.4. Cell monolayers, after light fixation in glutaraldehyde, were incubated in place by a protocol adapted from Sternberger and Graham and Karnovsky, then embedded by our usual method for monolayers. Reagents were confined to specific areas by neoprene 0-rings (Parker Seal Co.) reducing the amount of reagent needed to 50 microliters, 1/6th of that required to wet a 35 mm petri dish.


2010 ◽  
Vol 80 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Pei-Min Chao ◽  
Wan-Hsuan Chen ◽  
Chun-Huei Liao ◽  
Huey-Mei Shaw

Conjugated linoleic acid (CLA) is a collective term for the positional and geometric isomers of a conjugated diene of linoleic acid (C18:2, n-6). The aims of the present study were to evaluate whether levels of hepatic α-tocopherol, α-tocopherol transfer protein (α-TTP), and antioxidant enzymes in mice were affected by a CLA-supplemented diet. C57BL/6 J mice were divided into the CLA and control groups, which were fed, respectively, a 5 % fat diet with or without 1 g/100 g of CLA (1:1 mixture of cis-9, trans-11 and trans-10, cis-12) for four weeks. α-Tocopherol levels in plasma and liver were significantly higher in the CLA group than in the control group. Liver α-TTP levels were also significantly increased in the CLA group, the α-TTP/β-actin ratio being 2.5-fold higher than that in control mice (p<0.01). Thiobarbituric acid-reactive substances were significantly decreased in the CLA group (p<0.01). There were no significant differences between the two groups in levels of three antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). The accumulation of liver α-tocopherol seen with the CLA diet can be attributed to the antioxidant potential of CLA and the ability of α-TTP induction. The lack of changes in antioxidant enzyme protein levels and the reduced lipid peroxidation in the liver of CLA mice are due to α-tocopherol accumulation.


Sign in / Sign up

Export Citation Format

Share Document