Stabilization of a face-centered-cubic Mn structure with the Ag lattice parameter

1997 ◽  
Vol 165 (1-3) ◽  
pp. 180-184 ◽  
Author(s):  
P. Schieffer ◽  
C. Krembel ◽  
M.C. Hanf ◽  
D. Bolmont ◽  
G. Gewinner
1997 ◽  
Vol 3 (S2) ◽  
pp. 413-414
Author(s):  
E.M. Hunt ◽  
J.M. Hampikian ◽  
N.D. Evans

Ion implantation can be used to alter the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca+ to a fluence of 5 x 1016 ions/cm2. Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ≈7 - 8 nm in diameter as seen in Figure 1. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum (which is FCC with a lattice parameter of 0.404 nm) suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium.Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals.


1993 ◽  
Vol 313 ◽  
Author(s):  
O. Heckmann ◽  
H. Magnan ◽  
P. Le Fevre ◽  
D. Chandesris

ABSTRACTThe stable structure of cobalt is hexagonal closed packed (hep), but cobalt can be stabilized in the face centered cubic structure (fee) by epitaxy on Cu (100). These films are ferromagnetic with [110] in plane easy axis. The Magnetic anisotropies of these films strongly depend on their structure, and in particular to the possible deviation from the isotropie fee structure. We have studied these films by surface EXAF.S. By recording the spectra both in normal incidence and in grazing incidence we have shown that the Co/Cu (100) films have a face centered tetragonal structure: the mean nearest neighbour distance parallel to the surface is 2.55 Å (same value as in bulk copper) and the interlayer bonds length is 2.50 Å (same value as in bulk cobalt). We conclude that the films are in perfect epitaxy on copper (100) with a contraction of the lattice parameter perpendicular to the surface of 4%. A constant tetragonalization is observed for films of 2 to 15 Monolayers.


2000 ◽  
Vol 643 ◽  
Author(s):  
Z.P. Luo ◽  
Y.L. Tang ◽  
D.J. Miller ◽  
M.J. Kramer ◽  
I.R. Fisher ◽  
...  

AbstractThe stability of the Mg-Zn-Y icosahedral quasicrystal (IQC) has been studied by long-term annealing of a single grain IQC in quartz tubes. Decomposition of the IQC was observed after annealing at high temperatures (T≥773 K) sealed in Ar. During the decomposition process, the quasilattice parameter aR was found to decrease, associated with a decrease in Mg content of the IQC phase as confirmed by quantitative x-ray energy dispersive spectroscopy analyses. In addition, a new cubic approximant has been found in the annealed samples. This cubic approximant has a face-centered cubic (fcc) structure with lattice parameter of a = 1.276 nm, which is about (1/τ) times smaller than that of the fcc W'-(MgZnY) with a = 2.05 nm reported previously (where τ is the golden ratio).


2009 ◽  
Vol 1160 ◽  
Author(s):  
Emanuele Rimini ◽  
Riccardo De Bastiani ◽  
Egidio Carria ◽  
Maria Grazia Grimaldi ◽  
Giuseppe Nicotra ◽  
...  

AbstractThe crystallization of amorphous Ge2Sb2Te5 thin films has been studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The analysis has been performed on partially crystallized films, with a surface crystalline fraction (fS) ranging from 20% to 100%. XRD analysis indicates the presence, in the partially transformed layer, of grains with average lattice parameters higher than that of the equilibrium metastable cubic phase (from 6.06 Å at fS=20% to 6.01 Å at fS=100%). The amorphous to crystal transition, as shown by TEM analysis, occurs through the nucleation of face-centered-cubic crystal domains at the film surface. Local dimples appear in the crystallized areas, due to the higher atomic density of the crystal phase compared to the amorphous one. At the initial stage of the transformation, a fast bi-dimensional growth of such crystalline nucleus occurs by the generation of transrotational grains in which the lattice bending gives rise to an average lattice parameter significantly larger than that of the face-centered-cubic phase in good agreement with the XRD data. As the crystallized fraction increases above 80%, dimples and transrotational structures start to disappear and the lattice parameter approaches the bulk value.


2016 ◽  
Vol 22 (6) ◽  
pp. 1244-1250 ◽  
Author(s):  
Jingxu Zheng ◽  
Zhongyuan Luo ◽  
Lida Tan ◽  
Bin Chen

AbstractIn the present study, nano-sized cuboid-shaped particles in Mg–Nd–Y are studied by means of Cs-corrected atomic-scale high-angle annular dark-field scanning transmission electron microscopy. The structure of the cuboid-shaped phase is identified to be yttrium (major component) and neodymium atoms in face-centered cubic arrangement without the participation of Mg. The lattice parameter a=5.15 Å. During isothermal aging at 225°C, Mg3(Nd,Y) precipitates adhere to surface (100) planes of the cuboid-shaped particles with the orientation relationship: $[100]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[100]_{{{\rm Cuboid}}} $ and $[310]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[012]_{{{\rm Cuboid}}} $ . The fully coherent interfaces between the precipitates and the cuboid-shaped phases are reconstructed and categorized into two types: $(400)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface and $(200)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface.


1963 ◽  
Vol 41 (5) ◽  
pp. 758-761 ◽  
Author(s):  
Huey-Lin Luo ◽  
Pol Duwez

By rapidly cooling liquid alloys, single-phase face-centered cubic cobalt-rich solid solutions have been obtained with up to 17.2 at.% aluminum, 18.2 at.% gallium, 13 at.% silicon, 17.4 at.% germanium, and 5 at.% tin. With the exception of silicon, these limits of solubility exceed those found under equilibrium conditions. The variation of lattice parameter with composition has been measured and the data can be fitted with straight lines for all solute elements except gallium, in which a change of slope is observed at 13.2 at.%.


1990 ◽  
Vol 180 ◽  
Author(s):  
Jay A. Switzer ◽  
Michael J. Shane ◽  
Richard J. Phillips

ABSTRACTElectrochemistry can be used for the atomic-level architecture of ceramic materials. In this report, ceramic superlattices based on the TlaPbbOc/TldPbeOf system were electrodeposited with individual layer thicknesses as thin as 3nm. The superlattices were deposited from a single aqueous solution at room temperature, and the layer thicknesses were galvanostatically controlled. Substitution of Tl2O3 into PbO2 appears to stabilize a face-centered cubic structure with an average lattice parameter of 0.536nm. The lattice parameters for the T1aPbbOc. mixed oxides vary by less than 0.3% when the Pb/Tl ratio is varied from 0.84 to 7.3. Because the modulation wavelengths are of electron mean free path dimensions, this new class of degenerate semiconductor metal-oxide superlattices may show thickness-dependent quantum optical, electronic, or optoelectronic effects.


2010 ◽  
Vol 154-155 ◽  
pp. 269-272
Author(s):  
Yi Kun Luan ◽  
Nan Nan Song ◽  
Yun Long Bai ◽  
Xiu Hong Kang ◽  
Dian Zhong Li

A novel segregative carbide was discovered during the manufacture of high speed steel roll. The carbide with rectangular shape is a type of MC carbide not yet reported in the open literature. It is a face centered cubic carbide with a lattice parameter a=0.414445 nm, very close to the VC carbide but with a different chemical composition. The M represents the metallic elements (at.%): 91.80 V, 3.17 Cr, 2.19 Fe and 2.83 Mo.


2008 ◽  
Vol 23 (2) ◽  
pp. 473-477 ◽  
Author(s):  
Satoshi Semboshi ◽  
Toyohiko J. Konno

The electrical conductivities of Cu–3at.%Ti alloys aged at 773 K in a hydrogen atmosphere were investigated as a function of aging time. The electrical conductivity of the quenched alloy, 5.2% International Annealed Copper Standard (IACS), improved with aging time to 66% IACS after 48 h. This was mainly caused by the dilution of the Cu–Ti solid solution in the alloy, which is supported by the fact that the lattice parameter of the face-centered cubic (fcc) phase approaches that of pure Cu by aging in a hydrogen atmosphere.


Sign in / Sign up

Export Citation Format

Share Document