Simulation modeling and analysis issues for high-speed combined continuous and discrete food industry manufacturing processes

2002 ◽  
Vol 43 (3) ◽  
pp. 473-483 ◽  
Author(s):  
Abu M Huda ◽  
Christopher A Chung
Author(s):  
Andra´s Simon ◽  
George Flowers

Advanced rotor systems, for such applications as high-speed flywheel systems, consist (in a basic fashion) of a lightweight rotor spinning at relatively high speeds and supported by magnetic bearings. Composite materials are an extremely attractive choice for such rotor designs, offering high strength with light-weight. However, there are a number of issues that must be addressed for such efforts to be successful. Specific issues include imbalance control and active techniques to suppress internal damping-induced instability. A detailed description of the problem being considered and a strategy for solving it are presented. Simulation modeling and analysis results are presented and discussed to illustrate the method and demonstrate its effectiveness.


Author(s):  
Peter D. Hylton

Gas turbines are used for power generation with units in a range of sizes. They serve as power plants for both military and commercial aircraft. Demand is for faster, lighter engines, utilizing more advanced manufacturing processes. One of the means of meeting this goal is through use of longer, thinner, more flexible shafts which operate supercritically. Supercritical operation was once viewed as impractical, however, a number of today’s production gas turbines operate in this mode. The shaft manufacturing process is optimal if the shaft balance procedure can be conducted at low speeds, rather than requiring a more expensive and complicated high speed balance process. The objective of the project described in this paper is to develop a systematic process for a low speed balance procedure, which, in conjunction with appropriate damping, would permit a high speed shaft system to transition through additional critical speeds and operate safely above them. The discussion includes research on analytical modeling and analysis of representative shaft systems to determine the optimum locations of the balance planes and outlines an analysis approach for predicting shaft responses.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 24637-24645
Author(s):  
Sansan Ding ◽  
Weitao Han ◽  
Jinji Sun ◽  
Fujie Jiang ◽  
Guimei Deng ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 222
Author(s):  
Miguel A. Selles ◽  
Steven R. Schmid ◽  
Samuel Sanchez-Caballero ◽  
Maziar Ramezani ◽  
Elena Perez-Bernabeu

Metal containers (both food and beverage cans) are made from huge steel or aluminum coils that are transformed into two- or three-piece products. During the manufacturing process, the metal is sprayed on both sides and the aerosol acts as insulation, but unfortunately produces volatile organic compounds (VOCs). The present work presents a different way to manufacture these containers using a novel prelaminated two-layer polymer steel. It was experimentally possible to verify that the material survives all the involved manufacturing processes. Thus tests were carried out in an ironing simulator to measure roughness, friction coefficient and surface quality. In addition, two theoretical ironing models were developed: upper bound model and artificial neural network. These models are useful for packaging designers and manufacturers.


1983 ◽  
Vol 78 (383) ◽  
pp. 743 ◽  
Author(s):  
Mark J. Schervish ◽  
Averill M. Law ◽  
W. David Kelton

2012 ◽  
Vol 614-615 ◽  
pp. 1299-1302
Author(s):  
Ming Jing Li ◽  
Yu Bing Dong ◽  
Guang Liang Cheng

Multiple high speed CMOS cameras composing intersection system to splice large effect field of view(EFV). The key problem of system is how to locate multiple CMOS cameras in suitable position. Effect field of view was determined according to size, quantity and dispersion area of objects, so to determine camera position located on below, both sides and ahead to moving targets. This paper analyzes effect splicing field of view, operating range etc through establishing mathematical model and MATLAB simulation. Location method of system has advantage of flexibility splicing, convenient adjustment, high reliability and high performance-price ratio.


2000 ◽  
Author(s):  
Songbin Wei ◽  
Imin Kao

Abstract In wiresaw manufacturing process where thin wire moving at high speed is pushed onto ingot to produce slices of wafer, the wire is constrained by two wafer walls as it slices into the ingot. In this paper, we investigate the vibration of such wire under the constraints of wafer walls. To address this problem, the model for wire vibration with impact to wafer walls is developed. The equation of motion is discretized using the Galerkin’s method. The principle of impulse and momentum is utilized to solve the impact problem. The results of analysis and simulation indicate that the response under a pointwise sinusoidal excitation is neither periodical nor symmetric with respect to the horizontal axis, due to the excitation from the impact. The wire vibration behavior is affected dramatically by the wafer wall constraints.


2020 ◽  
pp. 29-33
Author(s):  
S. V. Kondakov ◽  
O.O. Pavlovskaya ◽  
I.D. Ivanov ◽  
A.R. Ishbulatov

A method for controlling the curvilinear movement of a high-speed tracked vehicle in a skid without loss of stability is proposed. The mathematical model of the vehicle is refined. With the help of simulation modeling, a control algorithm is worked out when driving in a skid. The effectiveness of vehicle steering at high speed outside the skid is shown. Keywords: controlled skid, dynamic stability, steering pole displacement, hydrostatic transmission, automatic system, fuel supply. [email protected]


Sign in / Sign up

Export Citation Format

Share Document