Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice

2002 ◽  
Vol 57 (6) ◽  
pp. 777-788 ◽  
Author(s):  
Magdalena Götz ◽  
Eva Hartfuss ◽  
Paolo Malatesta
2002 ◽  
Vol 69 (6) ◽  
pp. 708-713 ◽  
Author(s):  
Christopher T. Gregg ◽  
Andrew K. Chojnacki ◽  
Samuel Weiss

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariko Umemura ◽  
Yasuyuki Kaneko ◽  
Ryoko Tanabe ◽  
Yuji Takahashi

AbstractActivating transcription factor 5 (ATF5) is a member of the cAMP response element binding protein (CREB)/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5−/−) mice exhibited behavioural abnormalities, including abnormal social interactions, reduced behavioural flexibility, increased anxiety-like behaviours, and hyperactivity in novel environments. ATF5−/− mice may therefore be a useful animal model for psychiatric disorders. ATF5 is highly expressed in the ventricular zone and subventricular zone during cortical development, but its physiological role in higher-order brain structures remains unknown. To investigate the cause of abnormal behaviours exhibited by ATF5−/− mice, we analysed the embryonic cerebral cortex of ATF5−/− mice. The ATF5−/− embryonic cerebral cortex was slightly thinner and had reduced numbers of radial glial cells and neural progenitor cells, compared to a wild-type cerebral cortex. ATF5 deficiency also affected the basal processes of radial glial cells, which serve as a scaffold for radial migration during cortical development. Further, the radial migration of cortical upper layer neurons was impaired in ATF5−/− mice. These results suggest that ATF5 deficiency affects cortical development and radial migration, which may partly contribute to the observed abnormal behaviours.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126942 ◽  
Author(s):  
Qingfa Chen ◽  
Daiki Arai ◽  
Kazuki Kawakami ◽  
Takahiro Sawada ◽  
Xuefeng Jing ◽  
...  

Development ◽  
2000 ◽  
Vol 127 (24) ◽  
pp. 5253-5263 ◽  
Author(s):  
P. Malatesta ◽  
E. Hartfuss ◽  
M. Gotz

The developing central nervous system of vertebrates contains an abundant cell type designated radial glial cells. These cells are known as guiding cables for migrating neurons, while their role as precursor cells is less clear. Since radial glial cells express a variety of astroglial characteristics and differentiate as astrocytes after completing their guidance function, they have been considered as part of the glial lineage. Using fluorescence-activated cell sorting, we show here that radial glial cells also are neuronal precursors and only later, after neurogenesis, do they shift towards an exclusive generation of astrocytes. These results thus demonstrate a novel function for radial glial cells, namely their ability to generate two major cell types found in the nervous system, neurons and astrocytes.


Glia ◽  
2015 ◽  
Vol 63 (8) ◽  
pp. 1303-1319 ◽  
Author(s):  
Camino De Juan Romero ◽  
Víctor Borrell

Development ◽  
1997 ◽  
Vol 124 (18) ◽  
pp. 3501-3510 ◽  
Author(s):  
E.S. Anton ◽  
M.A. Marchionni ◽  
K.F. Lee ◽  
P. Rakic

During neuronal migration to the developing cerebral cortex, neurons regulate radial glial cell function and radial glial cells, in turn, support neuronal cell migration and differentiation. To study how migrating neurons and radial glial cells influence each others' function in the developing cerebral cortex, we examined the role of glial growth factor (a soluble form of neuregulin), in neuron-radial glial interactions. Here, we show that GGF is expressed by migrating cortical neurons and promotes their migration along radial glial fibers. Concurrently, GGF also promotes the maintenance and elongation of radial glial cells, which are essential for guiding neuronal migration to the cortex. In the absence of GGF signaling via erbB2 receptors, radial glial development is abnormal. Furthermore, GGF's regulation of radial glial development is mediated in part by brain lipid-binding protein (BLBP), a neuronally induced, radial glial molecule, previously shown to be essential for the establishment and maintenance of radial glial fiber system. The ability of GGF to influence both neuronal migration and radial glial development in a mutually dependent manner suggests that it functions as a mediator of interactions between migrating neurons and radial glial cells in the developing cerebral cortex.


2020 ◽  
Author(s):  
Kerstin Hasenpusch-Theil ◽  
Christine Laclef ◽  
Matt Colligan ◽  
Eamon Fitzgerald ◽  
Katherine Howe ◽  
...  

ABSTRACTDuring the development of the cerebral cortex, neurons are generated directly from radial glial cells or indirectly via basal progenitors. The balance between these division modes determines the number and types of neurons formed in the cortex thereby affecting cortical functioning. Here, we investigate the role of primary cilia in this process. We show that a mutation in the ciliary gene Inpp5e leads to a transient increase in direct neurogenesis and subsequently to an overproduction of layer V neurons in newborn mice. Loss of Inpp5e also affects ciliary structure coinciding with increased Akt and mTOR signalling and reduced Gli3 repressor levels. Genetically re-storing Gli3 repressor rescues the decreased indirect neurogenesis in Inpp5e mutants. Overall, our analyses reveal how primary cilia determine neuronal subtype composition of the cortex by controlling direct vs indirect neurogenesis. These findings have implications for understanding cortical malformations in ciliopathies with INPP5E mutations.


2014 ◽  
Vol 27 ◽  
pp. 39-46 ◽  
Author(s):  
Víctor Borrell ◽  
Magdalena Götz

Sign in / Sign up

Export Citation Format

Share Document