Chronic administration of aqueous extract of Hibiscus sabdariffa attenuates hypertension and reverses cardiac hypertrophy in 2K-1C hypertensive rats

2003 ◽  
Vol 86 (2-3) ◽  
pp. 181-185 ◽  
Author(s):  
I.P. Odigie ◽  
R.R. Ettarh ◽  
S.A. Adigun
2004 ◽  
Vol 18 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Orish Ebere Orisakwe ◽  
Danladi Chiroma Husaini ◽  
Onyenmechi Johnson Afonne

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Rayile Aisa ◽  
Zhaoxia Yu ◽  
Xiangyang Zhang ◽  
Dilinuer Maimaitiyiming ◽  
Lipeng Huang ◽  
...  

Aims. The aim of this study was to investigate the effects of the aqueous extract of Nardostachys chinensis Batalin (NCBAE) on blood pressure and cardiac hypertrophy using two-kidney one-clip (2K1C) hypertensive rats. Methods. 2K1C rat models were set up by clipping the left renal artery. Sham-operated rats underwent the same surgical procedure except for renal arterial clipping. 2K1C hypertensive rats were orally given NCBAE at doses of 210, 420, and 630 mg·kg−1·d−1 for 6 weeks. Twelve weeks after surgery, rat SBP and echocardiographic parameters were measured, cardiac histopathology was assessed, serum NO and LDH were detected, and the expression of Bcl-2 and caspase-3 of left ventricular tissue was assessed by western blot. Results. Treatment with NCBAE resulted in a decrease of SBP, LVPWd, LVPWs, IVSd, IVSs, LVW/BW ratio, and cardiomyocyte CSA, an increase of LVEF, and inhibition of 2K1C-induced reduction in serum NO and elevation of LDH compared with 2K1C group. NCBAE intervention also showed a significant increase of Bcl-2 expression and reduction of cleaved caspase-3 level dose-dependently in left ventricular tissue. Conclusion. Our data demonstrate that NCBAE has an antihypertensive property and protective effect on 2K1C-induced cardiac hypertrophy especially at the dose of 630 mg·kg−1·d−1.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
U. U. Ukoha ◽  
S. I. Mbagwu ◽  
G. U. Ndukwe ◽  
C. Obiagboso

Hibiscus sabdariffa L. has been used traditionally as herbal medicine and has been documented to have a broad range of therapeutic effects. The present study aimed to investigate the effects of chronic administration of aqueous extract of flowers of Hibiscus sabdariffa on the histology of the kidney and some biochemical indices of renal function in male Wistar rats. Twenty (20) Wistar rats were randomly divided into four (4) groups of five rats each. The extract was administered orally in doses 200, 500, and 800 mg/kg body weight for 21 days. The kidney was harvested and processed histologically and blood samples were taken for biochemical assays. The histological results showed dose dependent pathological states and the biochemical analysis revealed a dose dependant variation in renal indices. These results suggest that chronic administration of aqueous extract of Hibiscus sabdariffa may be toxic to the kidney.


2016 ◽  
Vol 3 (3) ◽  
pp. 178-187
Author(s):  
A.L Adedej ◽  
◽  
O.T Adedosu ◽  
J.A Badmus ◽  
G.E Adeleke ◽  
...  

Author(s):  
El-Ouady Fadwa ◽  
Mohamed Eddouks

Aims: The aim of the study was to investigate experimentally the antihypertensive effect of Ruta Montana. Background: Ruta montana L. is traditionally used in Moroccan herbal medicine to treat hypertension. This study aimed to evaluate experimentally the hypotensive and vasoactive properties of this plant. Objective: The objective of the study was to evaluate the effect of the aqueous extract of Ruta Montana on blood pressure parameters in LNAME-induced hypertensive rats and to determine the vasorelaxant activity of this aqueous extract. Methods: The antihypertensive effect of the aqueous extract obtained from Ruta montana aerial parts (RMAPAE) (200 mg/kg) was evaluated in normal and anesthetized hypertensive rats. Blood pressure parameters (systolic blood pressure (SBP), mean blood pressure (MBP) and diastolic blood pressure (DBP)) and heart rate were measured using a tail-cuff and a computer-assisted monitoring device. The acute and chronic effect of RMAPAE was recorded during 6 hours for the acute experiment and during 7 days for the sub-chronic test. In the other set, the vasorelaxant effect of RMAPAE on the contractile response was undertaken in isolated thoracic aorta. Results: The results indicated that RMAPAE extract significantly decreased SBP, MBP, DBP and heart rate in L-NAMEinduced hypertensive rats. Furthermore, RMAPAE was demonstrated to induce a dose dependent relaxation in the aorta precontracted with Epinephrine or KCl. More interestingly, this vasorelaxant activity of RMAPAE seems to be probably mediated through the prostaglandins pathway. Conclusion: The present study illustrates the beneficial action of Ruta montana on hypertension and supports then its use as an antihypertensive agent.


2002 ◽  
Vol 25 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Yunzeng ZOU ◽  
Tsutomu YAMAZAKI ◽  
Keiichi NAKAGAWA ◽  
Haruyasu YAMADA ◽  
Norio IRIGUCHI ◽  
...  

1987 ◽  
Vol 253 (4) ◽  
pp. H818-H825
Author(s):  
R. J. Tomanek ◽  
D. W. Carlson ◽  
P. J. Palmer ◽  
R. K. Bhatnagar

Peak left ventricular (LV) function, during rapid volume expansion, and cardiocyte structure were studied in rats with developing cardiac hypertrophy in response to Grollman hypertension (1 kidney, 1 figure 8) after chemical sympathectomy with 6-hydroxydopamine. This form of renovascular hypertension led to the same magnitude of hypertrophy in rats with or without sympathectomy. Indices of peak LV function, measured during acute volume expansion, tended to be normal or slightly higher in hypertensive rats than in controls. Sympathectomy in rats with hypertension significantly improved cardiac and stroke indices while decreasing total peripheral resistance at peak cardiac output. Despite similar magnitudes of LV hypertrophy (LVH) in the two hypertensive groups, cardiocytes in sympathectomized rats had higher mitochondrial volume densities and slightly lower myofibrillar volume densities. After regional sympathectomy of the anterior portion of the LV with phenol, mitochondrial volume density increased by 21% in hypertensive rats with LVH. These data indicate that, during the development of LVH in response to renovascular hypertension, sympathetic nerves do not contribute to the magnitude of LVH but may limit improvement in peak LV performance in response to increased preload. However, sympathetic nerves do play a role in the regulation of mitochondrial and myofibril growth.


1996 ◽  
Vol 90 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Hideo Kawakami ◽  
Hideki Okayama ◽  
Mareomi Hamada ◽  
Kunio Hiwada

1. We assessed the changes of atrial natriuretic peptide and brain natriuretic peptide gene expression associated with progression and regression of cardiac hypertrophy in renovascular hypertensive rats (RHR). 2. Two-kidney, one-clip hypertensive rats (6-week-old male Wistar) were made and studied 6 (RHR-1) and 10 weeks (RHR-2) after the procedure. Regression of cardiac hypertrophy was induced by nephrectomy at 6 weeks after constriction, and the nephrectomized rats were maintained further for 4 weeks (nephrectomized rat: NEP). Sham operation was performed, and the rats were studied after 6 (Sham-1) and 10 weeks (Sham-2). Atrial natriuretic peptide and brain natriuretic peptide gene expression in the left ventricle was analysed by Northern blotting. 3. Plasma atrial natriuretic peptide and brain natriuretic peptide were significantly higher in RHR-1 and RHR-2 than in Sham-1, Sham-2 and NEP. Atrial natriuretic peptide and brain natriuretic peptide mRNA levels in RHR-1 were approximately 7.2-fold and 1.8-fold higher than those in Sham-1, respectively, and the corresponding levels in RHR-2 were 13.0-fold and 2.4-fold higher than those in Sham-2, respectively. Atrial natriuretic peptide and brain natriuretic peptide mRNA levels of NEP were normalized. Levels of atrial natriuretic peptide and brain natriuretic peptide mRNA were well correlated positively with left ventricular weight/body weight ratios. There was a significant positive correlation between the levels of atrial natriuretic peptide and brain natriuretic peptide mRNA (r = 0.86, P<0.01). 4. We conclude that the expression of atrial natriuretic peptide and brain natriuretic peptide genes is regulated in accordance with the degree of myocardial hypertrophy and that the augmented expression of these two natriuretic peptides may play an important role in the maintenance of cardiovascular haemodynamics in renovascular hypertension.


Sign in / Sign up

Export Citation Format

Share Document