Roles of CD4+ T and B cells in influenza virus infection

2001 ◽  
Vol 1219 ◽  
pp. 311-318 ◽  
Author(s):  
Walter Gerhard ◽  
Krystyna Mozdzanowska
2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Brenda L. Tesini ◽  
Preshetha Kanagaiah ◽  
Jiong Wang ◽  
Megan Hahn ◽  
Jessica L. Halliley ◽  
...  

ABSTRACTMemory B cells (MBCs) are key determinants of the B cell response to influenza virus infection and vaccination, but the effect of different forms of influenza antigen exposure on MBC populations has received little attention. We analyzed peripheral blood mononuclear cells and plasma collected following human H3N2 influenza infection to investigate the relationship between hemagglutinin-specific antibody production and changes in the size and character of hemagglutinin-reactive MBC populations. Infection produced increased concentrations of plasma IgG reactive to the H3 head of the infecting virus, to the conserved stalk, and to a broad chronological range of H3s consistent with original antigenic sin responses. H3-reactive IgG MBC expansion after infection included reactivity to head and stalk domains. Notably, expansion of H3 head-reactive MBC populations was particularly broad and reflected original antigenic sin patterns of IgG production. Findings also suggest that early-life H3N2 infection “imprints” for strong H3 stalk-specific MBC expansion. Despite the breadth of MBC expansion, the MBC response included an increase in affinity for the H3 head of the infecting virus. Overall, our findings indicate that H3-reactive MBC expansion following H3N2 infection is consistent with maintenance of response patterns established early in life, but nevertheless includes MBC adaptation to the infecting virus.IMPORTANCERapid and vigorous virus-specific antibody responses to influenza virus infection and vaccination result from activation of preexisting virus-specific memory B cells (MBCs). Understanding the effects of different forms of influenza virus exposure on MBC populations is therefore an important guide to the development of effective immunization strategies. We demonstrate that exposure to the influenza hemagglutinin via natural infection enhances broad protection through expansion of hemagglutinin-reactive MBC populations that recognize head and stalk regions of the molecule. Notably, we show that hemagglutinin-reactive MBC expansion reflects imprinting by early-life infection and that this might apply to stalk-reactive, as well as to head-reactive, MBCs. Our findings provide experimental support for the role of MBCs in maintaining imprinting effects and suggest a mechanism by which imprinting might confer heterosubtypic protection against avian influenza viruses. It will be important to compare our findings to the situation after influenza vaccination.


2020 ◽  
Vol 12 (573) ◽  
pp. eabd3601
Author(s):  
Haley L. Dugan ◽  
Jenna J. Guthmiller ◽  
Philip Arevalo ◽  
Min Huang ◽  
Yao-Qing Chen ◽  
...  

Humans are repeatedly exposed to variants of influenza virus throughout their lifetime. As a result, preexisting influenza-specific memory B cells can dominate the response after infection or vaccination. Memory B cells recalled by adulthood exposure are largely reactive to conserved viral epitopes present in childhood strains, posing unclear consequences on the ability of B cells to adapt to and neutralize newly emerged strains. We sought to investigate the impact of preexisting immunity on generation of protective antibody responses to conserved viral epitopes upon influenza virus infection and vaccination in humans. We accomplished this by characterizing monoclonal antibodies (mAbs) from plasmablasts, which are predominantly derived from preexisting memory B cells. We found that, whereas some influenza infection–induced mAbs bound conserved and neutralizing epitopes on the hemagglutinin (HA) stalk domain or neuraminidase, most of the mAbs elicited by infection targeted non-neutralizing epitopes on nucleoprotein and other unknown antigens. Furthermore, most infection-induced mAbs had equal or stronger affinity to childhood strains, indicating recall of memory B cells from childhood exposures. Vaccination-induced mAbs were similarly induced from past exposures and exhibited substantial breadth of viral binding, although, in contrast to infection-induced mAbs, they targeted neutralizing HA head epitopes. Last, cocktails of infection-induced mAbs displayed reduced protective ability in mice compared to vaccination-induced mAbs. These findings reveal that both preexisting immunity and exposure type shape protective antibody responses to conserved influenza virus epitopes in humans. Natural infection largely recalls cross-reactive memory B cells against non-neutralizing epitopes, whereas vaccination harnesses preexisting immunity to target protective HA epitopes.


2006 ◽  
Vol 176 (7) ◽  
pp. 4343-4351 ◽  
Author(s):  
Elizabeth S. Coro ◽  
W. L. William Chang ◽  
Nicole Baumgarth

2006 ◽  
Vol 87 (11) ◽  
pp. 3361-3371 ◽  
Author(s):  
Jerome P. Jayasekera ◽  
Carola G. Vinuesa ◽  
Gunasegaran Karupiah ◽  
Nicholas J. C. King

NOS2 gene-deficient (NOS2−/−) mice are less susceptible than wild-type (NOS2+/+) mice to infection with Influenza A virus. Virus titres in the lungs of influenza-infected NOS2−/− mice are significantly lower than those in NOS2+/+ mice, with enhanced viral clearance in NOS2−/− mice dependent on gamma interferon (IFN-γ). The current study was undertaken to ascertain the role of specific components of the immune response in promoting virus clearance in influenza-infected NOS2−/− mice. Levels of T cell- and natural killer cell-mediated cytotoxicity in the lungs of virus-infected mice were not significantly different between NOS2+/+ and NOS2−/− mice. However, virus-infected NOS2−/− mice produced higher levels of virus-specific IgG2a antibody. Furthermore, more viable B cells and plasmablasts, along with greater levels of IFN-γ, were found in NOS2−/− splenocyte cultures stimulated with B-cell mitogens. In addition to the early reduction in virus titres, clinical symptoms and proinflammatory cytokine production were attenuated in NOS2−/− mice. Thus, NOS2−/− B cells are capable of responding rapidly to influenza virus infection by proliferating and preferentially producing antibody of the IgG2a subtype. The relationship between viral load and the development of immunopathology is discussed.


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0239488
Author(s):  
Supasek Kongsomros ◽  
Maytawan Thanunchai ◽  
Suwimon Manopwisedjaroen ◽  
Prasit Na-Ek ◽  
Sheng-Fan Wang ◽  
...  

2014 ◽  
Vol 89 (4) ◽  
pp. 2013-2023 ◽  
Author(s):  
Yuet Wu ◽  
Wenwei Tu ◽  
Kwok-Tai Lam ◽  
Kin-Hung Chow ◽  
Pak-Leung Ho ◽  
...  

ABSTRACTSecondaryStreptococcus pneumoniaeinfection after influenza is a significant clinical complication resulting in morbidity and sometimes mortality. Prior influenza virus infection has been demonstrated to impair the macrophage and neutrophil response to the subsequent pneumococcal infection. In contrast, how a secondary pneumococcal infection after influenza can affect the adaptive immune response to the initial influenza virus infection is less well understood. Therefore, this study focuses on how secondary pneumococcal infection after influenza may impact the humoral immune response to the initial influenza virus infection in a lethal coinfection mouse model. Compared to mice infected with influenza virus alone, mice coinfected with influenza virus followed by pneumococcus had significant body weight loss and 100% mortality. In the lung, lethal coinfection significantly increased virus titers and bacterial cell counts and decreased the level of virus-specific IgG, IgM, and IgA, as well as the number of B cells, CD4 T cells, and plasma cells. Lethal coinfection significantly reduced the size and weight of spleen, as well as the number of B cells along the follicular developmental lineage. In mediastinal lymph nodes, lethal coinfection significantly decreased germinal center B cells, T follicular helper cells, and plasma cells. Adoptive transfer of influenza virus-specific immune serum to coinfected mice improved survival, suggesting the protective functions of anti-influenza virus antibodies. In conclusion, coinfection reduced the B cell response to influenza virus. This study helps us to understand the modulation of the B cell response to influenza virus during a lethal coinfection.IMPORTANCESecondary pneumococcal infection after influenza virus infection is an important clinical issue that often results in excess mortality. Since antibodies are key mediators of protection, this study aims to examine the antibody response to influenza virus and demonstrates that lethal coinfection reduced the B cell response to influenza virus. This study helps to highlight the complexity of the modulation of the B cell response in the context of coinfection.


2005 ◽  
Vol 79 (10) ◽  
pp. 5943-5951 ◽  
Author(s):  
Krystyna Mozdzanowska ◽  
Michelle Furchner ◽  
Darya Zharikova ◽  
JingQi Feng ◽  
Walter Gerhard

ABSTRACT Previous studies have indicated that B cells make a significant contribution to the resolution of influenza virus infection. To determine how B cells participate in the control of the infection, we transferred intact, major histocompatibility complex class II (MHC-II)-negative or B-cell receptor (BCR)-transgenic spleen cells into B-cell-deficient and CD8+ T-cell-depleted μMT mice, termed μMT(−8), and tested them for ability to recover from infection. μMT(−8) mice that received no spleen cells invariably succumbed to the infection within 20 days, indicating that CD4+ T-cell activities had no significant therapeutic activity on their own; in fact, they were harmful and decreased survival time. Interestingly, however, they became beneficial in the presence of antiviral antibody (Ab). Injection of MHC-II(−/−) spleen cells, which can provide CD4+ T-cell-independent (TI) but not T-cell-dependent (TD) activities, delayed mortality but only rarely resulted in clearance of the infection. By contrast, 80% of μMT(−8) mice injected with normal spleen cells survived and resolved the infection. Transfer of BCR-transgenic spleen cells, which contained ∼10 times fewer virus-specific precursor B cells than normal spleen cells, had no significant impact on the course of the infection. Taken together, the results suggest that B cells contribute to the control of the infection mainly through production of virus-specific Abs and that the TD Ab response is therapeutically more effective than the TI response. In addition, CD4+ T cells appear to contribute, apart from promoting the TD Ab response, by improving the therapeutic activity of Ab-mediated effector mechanisms.


Sign in / Sign up

Export Citation Format

Share Document