scholarly journals Conserved currents and the energy-momentum tensor in conformally invariant theories for general dimensions

1997 ◽  
Vol 483 (1-2) ◽  
pp. 431-474 ◽  
Author(s):  
J Erdmenger ◽  
H Osborn
2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


1996 ◽  
Vol 11 (31) ◽  
pp. 5479-5493 ◽  
Author(s):  
REINHOLD W. GEBERT ◽  
SHUN’YA MIZOGUCHI ◽  
TAKEO INAMI

We show that the Painlevé test is useful not only for probing (non)integrability but also for finding the values of spins of conserved currents (W currents) in Toda field theories (TFT’s). In the case of TFT’s based on simple Lie algebras the locations of resonances are shown to give precisely the spins of conserved W currents. We apply this test to TFT’s based strictly on hyperbolic Kac-Moody algebras and show that there exist no resonance other than that at n = 2, which corresponds to the energy-momentum tensor, indicating their nonintegrability. We also check by direct calculation that there are no spin-3 or -4 conserved currents for all the hyperbolic TFT’s in agreement with the result of our Painlevé analysis.


2006 ◽  
Vol 21 (17) ◽  
pp. 3641-3647 ◽  
Author(s):  
J. SADEGHI ◽  
A. TOFIGHI ◽  
A. BANIJAMALI

We consider the relation between scale invariance and conformal invariance. In our analysis the variation of the metric is taken into account. By imposing some conditions on the trace of the energy–momentum tensor and on the variation of the action, we find that the scale dimensions of the fields are not affected. We also obtain the conserved currents. We find that the conditions for conformal invariance are stronger than for scale invariance.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 70
Author(s):  
Florio M. Ciaglia ◽  
Fabio Di Cosmo ◽  
Alberto Ibort ◽  
Giuseppe Marmo ◽  
Luca Schiavone ◽  
...  

As the space of solutions of the first-order Hamiltonian field theory has a presymplectic structure, we describe a class of conserved charges associated with the momentum map, determined by a symmetry group of transformations. A gauge theory is dealt with by using a symplectic regularization based on an application of Gotay’s coisotropic embedding theorem. An analysis of electrodynamics and of the Klein–Gordon theory illustrate the main results of the theory as well as the emergence of the energy–momentum tensor algebra of conserved currents.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Mirko Serino

Abstract We present an explicit momentum space computation of the four-point function of the energy-momentum tensor in 4 spacetime dimensions for the free and conformally invariant theory of a scalar field. The result is obtained by explicit evaluation of the Feynman diagrams by tensor reduction. We work by embedding the scalar field theory in a gravitational background consistently with conformal invariance in order to derive all the terms the correlator consists of and all the Ward identities implied by the requirements of general covariance and anomalous Weyl symmetry. We test all these identities numerically in several kinematic configurations. Mathematica notebooks detailing the step-by-step computation are made publicly available through a GitHub repository (https://github.com/mirkos86/4-EMT-correlation-function-in-a-4d-CFT.). To the best of our knowledge, this is the first explicit result for the four-point correlation function of the energy-momentum tensor in a conformal and non supersymmetric field theory which is readily numerically evaluable in any kinematic configuration.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Wei Fan ◽  
Angelos Fotopoulos ◽  
Stephan Stieberger ◽  
Tomasz R. Taylor

Abstract Conformally soft gluons are conserved currents of the Celestial Conformal Field Theory (CCFT) and generate a Kac-Moody algebra. We study celestial amplitudes of Yang-Mills theory, which are Mellin transforms of gluon amplitudes and take the double soft limit of a pair of gluons. In this manner we construct the Sugawara energy-momentum tensor of the CCFT. We verify that conformally soft gauge bosons are Virasoro primaries of the CCFT under the Sugawara energy-momentum tensor. The Sugawara tensor though does not generate the correct conformal transformations for hard states. In Einstein-Yang- Mills theory, we consider an alternative construction of the energy-momentum tensor, similar to the double copy construction which relates gauge theory amplitudes with gravity ones. This energy momentum tensor has the correct properties to generate conformal transformations for both soft and hard states. We extend this construction to supertranslations.


Sign in / Sign up

Export Citation Format

Share Document