Stimuli-induced superoxide radical generation in vitro by human alveolar macrophages from smokers: Modulation by n-acetylcysteine treatment in vivo

1986 ◽  
Vol 2 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Hkan Bergstrand ◽  
Anette Björnson ◽  
Anders Eklund ◽  
Roine Hernbrand ◽  
Kjell Larsson ◽  
...  
1980 ◽  
Vol 30 (3) ◽  
pp. 753-758
Author(s):  
W B Davis ◽  
I S Barsoum ◽  
P W Ramwell ◽  
H Yeager

Experiments were performed to evaluate the in vitro effects of Escherichia coli lipopolysaccharide on viability and function of human alveolar macrophages. Alveolar macrophages were obtained by fiberoptic bronchoscopy and saline bronchial lavage from 12 normal, nonsmoking volunteers. Cells were incubated with different concentrations of E. coli endotoxin for 1 and 24 h. Endotoxin (10 microgram/ml and more) was cytotoxic for alveolar macrophages after 24 h of incubation and induced significant inhibition of phagocytosis, adherence, and spreading. The effects of endotoxin on alveolar macrophage viability and function were dose and time dependent and were not influenced by indomethacin. Thus, human alveolar macrophages, like other mononuclear phagocytes, are extremely sensitive to endotoxin effects; these observations may be relevant in conditions in which endotoxin may be in contact with alveolar macrophages in vivo: endobronchial infections with gram-negative organisms, byssinosis, chronic bronchitis of grain handles, and humidifier fever.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Jawid Nazir Ahmad ◽  
Jana Holubova ◽  
Oldrich Benada ◽  
Olga Kofronova ◽  
Ludek Stehlik ◽  
...  

ABSTRACTMonocytes arriving at the site of infection differentiate into functional effector macrophages to replenish the resident sentinel cells.Bordetella pertussis, the pertussis agent, secretes an adenylate cyclase toxin-hemolysin (CyaA) that binds myeloid phagocytes through complement receptor 3 (CD11b/CD18) and swiftly delivers its adenylyl cyclase enzyme domain into phagocytes. This ablates the bactericidal capacities of phagocytes through massive and unregulated conversion of cytosolic ATP into the key signaling molecule cAMP. We show that exposure of primary human monocytes to as low a concentration as 22.5 pM CyaA, or a low (2:1) multiplicity of infection by CyaA-producingB. pertussisbacteria, blocks macrophage colony-stimulating factor (M-CSF)-driven differentiation of monocytes. CyaA-induced cAMP signaling mediated through the activity of protein kinase A (PKA) efficiently blocked expression of macrophage markers, and the monocytes exposed to 22.5 pM CyaA failed to acquire the characteristic intracellular complexity of mature macrophage cells. Neither M-CSF-induced endoplasmic reticulum (ER) expansion nor accumulation of Golgi bodies, mitochondria, or lysosomes was observed in toxin-exposed monocytes, which remained small and poorly phagocytic and lacked pseudopodia. Exposure to 22.5 pM CyaA toxin provoked loss of macrophage marker expression onin vitrodifferentiated macrophages, as well as on primary human alveolar macrophages, which appeared to dedifferentiate into monocyte-like cells with upregulated CD14 levels. This is the first report that terminally differentiated tissue-resident macrophage cells can be dedifferentiatedin vitro. The results suggest that blocking of monocyte-to-macrophage transition and/or dedifferentiation of the sentinel cells of innate immunity through cAMP-elevating toxin action may represent a novel immune evasion strategy of bacterial pathogens.IMPORTANCEMacrophages are key sentinel cells of the immune system, and, as such, they are targeted by the toxins produced by the pertussis agentBordetella pertussis. The adenylate cyclase toxin (CyaA) mediates immune evasion ofB. pertussisby suspending the bactericidal activities of myeloid phagocytes. We reveal a novel mechanism of potential subversion of host immunity, where CyaA at very low (22 pM) concentrations could inhibit maturation of human monocyte precursors into the more phagocytic macrophage cells. Furthermore, exposure to low CyaA amounts has been shown to trigger dedifferentiation of mature primary human alveolar macrophages back into monocyte-like cells. This unprecedented capacity is likely to promote survival of the pathogen in the airways, both by preventing maturation of monocytes attracted to the site of infection into phagocytic macrophages and by dedifferentiation of the already airway-resident sentinel cells.


Blood ◽  
1990 ◽  
Vol 75 (1) ◽  
pp. 122-127 ◽  
Author(s):  
MP McGee ◽  
R Devlin ◽  
G Saluta ◽  
H Koren

Abstract This study was performed to determine if genes for tissue factor and factor VII proteins are expressed and regulated in vivo in lung macrophages during inflammation. Human alveolar macrophages and alveolar fluids were obtained 18 hours after healthy male adults were exposed, for 2 hours during intermittent exercise, to either air or air with 0.4 ppm ozone, added as a model toxic respiratory agent. Messenger RNA (mRNA) for both tissue factor and factor VII were demonstrated in macrophages isolated after subjects were exposed to unpolluted control air. With the same subjects examined after breathing ozone, the following changes were observed: tissue factor mRNA concentration in macrophages increased 2.6 +/- 0.47-fold. Factor VII mRNA concentration was reduced 0.64 +/- 0.24-fold. Total numbers of macrophages recovered did not change significantly. Ratios of nuclear:cytoplasmic areas of cytocentrifuged macrophages were augmented by 24.8% +/- 3%, giving morphometric evidence that immature cell forms increased in the population. In the lavage, tissue factor activity was increased 2.1 +/- 0.3-fold, while amounts of lipid phosphorous, which estimate total membrane lipids, and estimated volumes of alveolar fluid were not significantly changed. Factor VII activity and fibrinopeptide A levels in lavage were increased approximately twofold. These results using rapidly isolated, noncultured cells indicate that tissue factor and factor VII mRNA are synthesized in the alveolar macrophage population in vivo. In addition, evidence was found that as a result of breathing ozone, a shift in alveolar macrophage maturity occurred in association with tissue factor mRNA, tissue factor activity, and factor VII activity increases, and with formation of fibrinopeptide A in alveolar fluids.


1991 ◽  
Vol 261 (6) ◽  
pp. F1026-F1032 ◽  
Author(s):  
A. Vignery ◽  
M. J. Raymond ◽  
H. Y. Qian ◽  
F. Wang ◽  
S. A. Rosenzweig

The fusion of mononuclear phagocytes occurs spontaneously in vivo and leads to the differentiation of either multinucleated giant cells or osteoclasts in chronic inflammatory sites or in bone, respectively. Although osteoclasts are responsible for resorbing bone, the functional role of giant cells in chronic inflammatory reactions and tumors remains poorly understood. We recently reported that the plasma membrane of multinucleated macrophages is, like that of osteoclasts, enriched in Na-K-adenosinetriphosphatases (ATPases). We also observed that the localization of their Na-K-ATPases is restricted to the nonadherent domain of the plasma membrane of cells both in vivo and in vitro, thus imposing a functional polarity on their organization. By following this observation, we wished to investigate whether these cells also expressed, like osteoclasts, functional receptors for calcitonin (CT). To this end, alveolar macrophages were fused in vitro, and both their structural and functional association with CT was analyzed and compared with those of mononucleated peritoneal and alveolar macrophages. Evidence is presented that multinucleated alveolar macrophages express a high copy number of functional receptors for CT. Our results also indicate that alveolar macrophages, much like peritoneal, express functional receptors for calcitonin gene-related peptide. It is suggested that multinucleated rat alveolar macrophages offer a novel model system to study CT receptors and that calcitonin may control local immune reactions where giant cells differentiate.


CHEST Journal ◽  
1979 ◽  
Vol 75 (2) ◽  
pp. 224
Author(s):  
William W. Merrill ◽  
Gary P. Naegel ◽  
Richard A. Matthay ◽  
Herbert Y. Reynolds

Alcohol ◽  
1994 ◽  
Vol 11 (6) ◽  
pp. 539-547 ◽  
Author(s):  
Stanley S. Greenberg ◽  
Jianming Xie ◽  
Ye Wang ◽  
Jay Kolls ◽  
Tadeus Malinski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document