Estimations a priori et Lipschitz pour le groupe d'évolution des équations de Navier–Stokes

Author(s):  
Isabelle Gallagher
Keyword(s):  
A Priori ◽  
Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2021 ◽  
Vol 11 (4) ◽  
pp. 1399
Author(s):  
Jure Oder ◽  
Cédric Flageul ◽  
Iztok Tiselj

In this paper, we present uncertainties of statistical quantities of direct numerical simulations (DNS) with small numerical errors. The uncertainties are analysed for channel flow and a flow separation case in a confined backward facing step (BFS) geometry. The infinite channel flow case has two homogeneous directions and this is usually exploited to speed-up the convergence of the results. As we show, such a procedure reduces statistical uncertainties of the results by up to an order of magnitude. This effect is strongest in the near wall regions. In the case of flow over a confined BFS, there are no such directions and thus very long integration times are required. The individual statistical quantities converge with the square root of time integration so, in order to improve the uncertainty by a factor of two, the simulation has to be prolonged by a factor of four. We provide an estimator that can be used to evaluate a priori the DNS relative statistical uncertainties from results obtained with a Reynolds Averaged Navier Stokes simulation. In the DNS, the estimator can be used to predict the averaging time and with it the simulation time required to achieve a certain relative statistical uncertainty of results. For accurate evaluation of averages and their uncertainties, it is not required to use every time step of the DNS. We observe that statistical uncertainty of the results is uninfluenced by reducing the number of samples to the point where the period between two consecutive samples measured in Courant–Friedrichss–Levy (CFL) condition units is below one. Nevertheless, crossing this limit, the estimates of uncertainties start to exhibit significant growth.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
H. D. Akolekar ◽  
J. Weatheritt ◽  
N. Hutchins ◽  
R. D. Sandberg ◽  
G. Laskowski ◽  
...  

Nonlinear turbulence closures were developed that improve the prediction accuracy of wake mixing in low-pressure turbine (LPT) flows. First, Reynolds-averaged Navier–Stokes (RANS) calculations using five linear turbulence closures were performed for the T106A LPT profile at isentropic exit Reynolds numbers 60,000 and 100,000. None of these RANS models were able to accurately reproduce wake loss profiles, a crucial parameter in LPT design, from direct numerical simulation (DNS) reference data. However, the recently proposed kv2¯ω transition model was found to produce the best agreement with DNS data in terms of blade loading and boundary layer behavior and thus was selected as baseline model for turbulence closure development. Analysis of the DNS data revealed that the linear stress–strain coupling constitutes one of the main model form errors. Hence, a gene-expression programming (GEP) based machine-learning technique was applied to the high-fidelity DNS data to train nonlinear explicit algebraic Reynolds stress models (EARSM), using different training regions. The trained models were first assessed in an a priori sense (without running any RANS calculations) and showed much improved alignment of the trained models in the region of training. Additional RANS calculations were then performed using the trained models. Importantly, to assess their robustness, the trained models were tested both on the cases they were trained for and on testing, i.e., previously not seen, cases with different flow features. The developed models improved prediction of the Reynolds stress, turbulent kinetic energy (TKE) production, wake-loss profiles, and wake maturity, across all cases.


2020 ◽  
Vol 9 (1) ◽  
pp. 1402-1419 ◽  
Author(s):  
Nejmeddine Chorfi ◽  
Mohamed Abdelwahed ◽  
Luigi C. Berselli

Abstract In this paper we propose some new non-uniformly-elliptic/damping regularizations of the Navier-Stokes equations, with particular emphasis on the behavior of the vorticity. We consider regularized systems which are inspired by the Baldwin-Lomax and by the selective Smagorinsky model based on vorticity angles, and which can be interpreted as Large Scale methods for turbulent flows. We consider damping terms which are active at the level of the vorticity. We prove the main a priori estimates and compactness results which are needed to show existence of weak and/or strong solutions, both in velocity/pressure and velocity/vorticity formulation for various systems. We start with variants of the known ones, going later on to analyze the new proposed models.


2007 ◽  
Vol 04 (04) ◽  
pp. 567-601
Author(s):  
JOSE A. LAMAS

An iterative method has been developed for the solution of the Navier–Stokes equations and implemented using finite volumes with co-located variable arrangement. A pressure equation is obtained combining algebraic momentum and mass conservation equations resulting in a self-consistent set of equations. An iterative procedure solves the pressure equation consistently with mass conservation and then updates velocities based on momentum equations without introducing velocity or pressure correction equations. The process is repeated until velocities satisfy both mass and momentum conservation. Tests demonstrate a priori pressure field solution consistent with mass conservation, and solution of hydrostatic problems in one iteration.


1989 ◽  
Vol 16 (6) ◽  
pp. 829-844
Author(s):  
A. Soulaïmani ◽  
Y. Ouellet ◽  
G. Dhatt ◽  
R. Blanchet

This paper is devoted to the computational analysis of three-dimensional free surface flows. The model solves the Navier-Stokes equations without any a priori restriction on the pressure distribution. The variational formulation along with the solution algorithm are presented. Finally, the model is used to study the hydrodynamic regime in the vicinity of a projected harbor installation. Key words: free surface flows, three-dimensional flows, finite element method.


2021 ◽  
Vol 932 ◽  
Author(s):  
Mehdi Samiee ◽  
Ali Akhavan-Safaei ◽  
Mohsen Zayernouri

The presence of non-local interactions and intermittent signals in the homogeneous isotropic turbulence grant multi-point statistical functions a key role in formulating a new generation of large-eddy simulation (LES) models of higher fidelity. We establish a tempered fractional-order modelling framework for developing non-local LES subgrid-scale models, starting from the kinetic transport. We employ a tempered Lévy-stable distribution to represent the source of turbulent effects at the kinetic level, and we rigorously show that the corresponding turbulence closure term emerges as the tempered fractional Laplacian, $(\varDelta +\lambda )^{\alpha } (\cdot )$ , for $\alpha \in (0,1)$ , $\alpha \neq \frac {1}{2}$ and $\lambda >0$ in the filtered Navier–Stokes equations. Moreover, we prove the frame invariant properties of the proposed model, complying with the subgrid-scale stresses. To characterize the optimum values of model parameters and infer the enhanced efficiency of the tempered fractional subgrid-scale model, we develop a robust algorithm, involving two-point structure functions and conventional correlation coefficients. In an a priori statistical study, we evaluate the capabilities of the developed model in fulfilling the closed essential requirements, obtained for a weaker sense of the ideal LES model (Meneveau, Phys. Fluids, vol. 6, issue 2, 1994, pp. 815–833). Finally, the model undergoes the a posteriori analysis to ensure the numerical stability and pragmatic efficiency of the model.


Sign in / Sign up

Export Citation Format

Share Document