Downregulation of p38 kinase pathway by cAMP response element-binding protein protects HL-60 cells from iron chelator-induced apoptosis

2003 ◽  
Vol 35 (10) ◽  
pp. 1171-1184 ◽  
Author(s):  
Suck-Chei Choi ◽  
Bum-Su Kim ◽  
Moon-Young Song ◽  
Eun-Young Choi ◽  
Hyun-Mee Oh ◽  
...  
Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 217-225 ◽  
Author(s):  
Michael P. Scheid ◽  
Ian N. Foltz ◽  
Peter R. Young ◽  
John W. Schrader ◽  
Vincent Duronio

Abstract The role of ceramide as a second messenger is a subject of great interest, particularly since it is implicated in signaling in response to inflammatory cytokines. Ceramide induces apoptosis in both cytokine-dependent MC/9 cells and factor-independent U937 cells. Elevation of cyclic adenosine monophosphate (cAMP) levels inhibits apoptosis induced by ceramide and several other treatments. One target of cAMP-mediated signaling is the transcription factor CREB (cAMP response element binding protein), and recently CREB phosphorylation at an activating site has been shown to also be mediated by a cascade involving p38 mitogen-activated protein kinase (MAPK), one of the stress-activated MAP kinases. Because no role for p38 MAPK in apoptosis has been firmly established, we examined the relationship between p38 MAPK and CREB phosphorylation under various conditions. Ceramide, or sphingomyelinase, like tumor necrosis factor- (TNF-) or the hematopoietic growth factor, interleukin-3 (IL-3), was shown to activate p38 MAPK, which in turn activated MAPKAP kinase-2. Each of these treatments led to phosphorylation of CREB (and the related factor ATF-1). A selective p38 MAPK inhibitor, SB203580, blocked TNF-– or ceramide-induced CREB phosphorylation, but had no effect on the induction of apoptosis mediated by these agents. The protective agents cAMP and IL-3 also led to CREB phosphorylation, but this effect was independent of p38 MAPK, even though IL-3 was shown to activate both p38 MAPK and MAPKAP kinase-2. Therefore, the opposing effects on apoptosis observed with cAMP and IL-3, compared with ceramide and TNF-, could not be explained on the basis of phosphorylation of CREB. In addition, because SB203580 had no effect of TNF- or ceramide-induced apoptosis, our results strongly argue against a role for p38 MAPK in the induction of TNF-– or ceramide-induced apoptosis.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 217-225 ◽  
Author(s):  
Michael P. Scheid ◽  
Ian N. Foltz ◽  
Peter R. Young ◽  
John W. Schrader ◽  
Vincent Duronio

The role of ceramide as a second messenger is a subject of great interest, particularly since it is implicated in signaling in response to inflammatory cytokines. Ceramide induces apoptosis in both cytokine-dependent MC/9 cells and factor-independent U937 cells. Elevation of cyclic adenosine monophosphate (cAMP) levels inhibits apoptosis induced by ceramide and several other treatments. One target of cAMP-mediated signaling is the transcription factor CREB (cAMP response element binding protein), and recently CREB phosphorylation at an activating site has been shown to also be mediated by a cascade involving p38 mitogen-activated protein kinase (MAPK), one of the stress-activated MAP kinases. Because no role for p38 MAPK in apoptosis has been firmly established, we examined the relationship between p38 MAPK and CREB phosphorylation under various conditions. Ceramide, or sphingomyelinase, like tumor necrosis factor- (TNF-) or the hematopoietic growth factor, interleukin-3 (IL-3), was shown to activate p38 MAPK, which in turn activated MAPKAP kinase-2. Each of these treatments led to phosphorylation of CREB (and the related factor ATF-1). A selective p38 MAPK inhibitor, SB203580, blocked TNF-– or ceramide-induced CREB phosphorylation, but had no effect on the induction of apoptosis mediated by these agents. The protective agents cAMP and IL-3 also led to CREB phosphorylation, but this effect was independent of p38 MAPK, even though IL-3 was shown to activate both p38 MAPK and MAPKAP kinase-2. Therefore, the opposing effects on apoptosis observed with cAMP and IL-3, compared with ceramide and TNF-, could not be explained on the basis of phosphorylation of CREB. In addition, because SB203580 had no effect of TNF- or ceramide-induced apoptosis, our results strongly argue against a role for p38 MAPK in the induction of TNF-– or ceramide-induced apoptosis.


2019 ◽  
Vol 17 (3) ◽  
pp. 249-253
Author(s):  
Liu Chenglong ◽  
Liu Haihua ◽  
Zhang Fei ◽  
Zheng Jie ◽  
Wei Fang

Cancer-induced bone pain is a severe and complex pain caused by metastases to bone in cancer patients. The aim of this study was to investigate the analgesic effect of scutellarin on cancer-induced bone pain in rat models by intrathecal injection of Walker 256 carcinoma cells. Mechanical allodynia was determined by paw withdrawal threshold in response to mechanical stimulus, and thermal hyperalgesia was indicated by paw withdrawal latency in response to noxious thermal stimulus. The paw withdrawal threshold and paw withdrawal latencies were significantly decreased after inoculation of tumor cells, whereas administration of scutellarin significantly attenuated tumor cell inoculation-induced mechanical and heat hyperalgesia. Tumor cell inoculation-induced tumor growth was also significantly abrogated by scutellarin. Ca2+/calmodulin-dependent protein kinase II is a multifunctional kinase with up-regulated activity in bone pain models. The activation of Ca2+/calmodulin-dependent protein kinase II triggers phosphorylation of cAMP-response element binding protein. Scutellarin significantly reduced the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein in cancer-induced bone pain rats. Collectively, our study demonstrated that scutellarin attenuated tumor cell inoculation-induced bone pain by down-regulating the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein. The suppressive effect of scutellarin on phosphorylated-Ca2+/calmodulin-dependent protein kinase II/phosphorylated-cAMP-response element binding protein activation may serve as a novel therapeutic strategy for CIBP management.


Circulation ◽  
1995 ◽  
Vol 92 (8) ◽  
pp. 2041-2043 ◽  
Author(s):  
Frank Ulrich Müller ◽  
Peter Bokník ◽  
Andreas Horst ◽  
Jörg Knapp ◽  
Bettina Linck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document