scholarly journals Nonlocal numerical analyses of strain localisation in dense sand

2003 ◽  
Vol 37 (5-6) ◽  
pp. 497-506 ◽  
Author(s):  
C Di Prisco ◽  
S Imposimato
Author(s):  
Kshama Roy ◽  
Bipul Hawlader ◽  
Shawn Kenny ◽  
Ian Moore

Buried pipelines are extensively used in onshore and offshore for transportation of hydrocarbons. The response of pipeline due to lateral and upward relative displacements is one of the major concerns in pipeline design. Both physical modeling and numerical analyses have been performed in the past to understand pipeline-soil interaction mechanisms. The numerical analyses are generally performed using finite element (FE) modeling techniques. For the pipelines buried in sand, a large number of analyses available in the literature have been performed using the Mohr-Coulomb model assigning constant values of angle of internal friction (ϕ′) and dilation (ψ). However, dense sand shows post-peak softening behavior and the behavior of sand also depends on mode of shearing, such as triaxial (TX), direct shear (DS) or direct simple shear (DSS) conditions. In the present study, FE analysis of buried pipelines in dense sand is presented. The first set of analyses are performed using the built-in Mohr-Coulomb model in Abaqus FE software with constant angles of internal friction and dilation, as typically used in previous FE analysis of pipeline-soil interaction. The second set of analyses are performed using a modified Mohr-Coulomb model where pre-peak hardening, post-peak softening, density and confining pressure dependent friction and dilation angles are considered. The FE analyses are performed using the Arbitrary Lagrangian-Eulerian (ALE) approach available in Abaqus/Explicit FE software. The modified Mohr-Coulomb model is implemented in Abaqus FE software using a user defined subroutine. Shear band formation due to strain localization and failure patterns for both lateral and upward pipeline-soil interactions are discussed from the simulations with MC and MMC models. FE results show that the MMC model can simulate the load-displacement behavior and failure pattern better than the simulations with the MC model.


2019 ◽  
Vol 46 (3) ◽  
pp. 261-275
Author(s):  
César Yepes ◽  
Jorge Naude ◽  
Federico Mendez ◽  
Margarita Navarrete ◽  
Fátima Moumtadi

2021 ◽  
Vol 242 ◽  
pp. 112337
Author(s):  
Tuan A. Pham ◽  
Quoc-Anh Tran ◽  
Pascal Villard ◽  
Daniel Dias
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1495
Author(s):  
Dan-Andrei Șerban ◽  
Cosmin Marșavina ◽  
Alexandru Viorel Coșa ◽  
George Belgiu ◽  
Radu Negru

In this article, the yielding and plastic flow of a rapid-prototyped ABS compound was investigated for various plane stress states. The experimental procedures consisted of multiaxial tests performed on an Arcan device on specimens manufactured through photopolymerization. Numerical analyses were employed in order to determine the yield points for each stress state configuration. The results were used for the calibration of the Hosford yield criterion and flow potential. Numerical analyses performed on identical specimen models and test configurations yielded results that are in accordance with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document