Nonlinear SEM numerical analyses of dry dense sand specimens under rapid and dynamic loading

Author(s):  
C. di Prisco ◽  
M. Stupazzini ◽  
C. Zambelli
2021 ◽  
Vol 31 (2) ◽  
pp. 117-137
Author(s):  
Sagar Jaiswal ◽  
Vinay Bhushan Chauhan

Abstract The use of geosynthetic reinforcement to enhance the ultimate load-bearing capacity and reduce the anticipated settlement of the shallow foundation has gained sufficient attention in the geotechnical field. The improved performance of the shallow foundation is achieved by providing one or more layers of geosynthetics below the foundation. The full wraparound technique proved to be efficient for the confinement of soil mass and reduction in settlement of foundation however lacks the literature to ascertain the performances of such footing under dynamic loading. In view of the above, the present study examines the effect of geosynthetic layers having a finite length with full wraparound ends as a reinforcement layer, placed horizontally at a suitable depth below the foundation using the finite element modeling (FEM) and evaluates the ultimate load-bearing capacity of a strip footing resting on loose and dense coarse-grained earth beds under seismic loading and further compared to those of footing resting on unreinforced earth bed. Moreover, the effect of horizontal seismic acceleration coefficient (kh) on the ultimate load-bearing capacity has been investigated by varying kh from 0.1 to 0.6 at an interval of 0.1, for both reinforced and unreinforced earth bed having loose and dense soil strata. Furthermore, this study demonstrates that by adopting the new practice of using the geosynthetic reinforcement with the full wraparound ends in foundations, it is possible to support relatively heavier structures under static as well as dynamic loading without allowing large footing settlements. From the outcomes of the present study, it is noted that the ultimate load-bearing capacity of footing resting on loose and dense sand bed found to be improved by 60% and 18% for soils having friction angle of 25° and 40°, respectively compared to respective unreinforced earth beds under static condition.


2016 ◽  
Vol 2016 (0) ◽  
pp. GS-23
Author(s):  
Masaaki ISHIBASHI ◽  
Takehiro FUJIMOTO ◽  
Yasunori MATSUYAMA

Author(s):  
Mustafa Tolun ◽  
Buse Emirler ◽  
Abdulazim Yildiz ◽  
Hamza Güllü

In this paper, responses of a single pile embedded in sand soil (loose and dense) under dynamic loading (sinusoidal dynamic vibrations of 0.1 g to 0.5 g) have been investigated by two-dimensional analysis using the finite element method (FEM). Viscous (dashpot) boundaries have been used for taking the boundary effects of far-field into account. The applicability and accuracy of site responses of two-dimensional analysis due to the FEM modelling have been well verified with one-dimensional site responses. The results indicate that the relative density of sand (loose, dense) becomes prominent for the displacements of the pile, specifically under the frequency effects of resonance. While the pile in loose sand causes the displacements of 0.1 m to 0.5 m, the pile in dense sand leads to the displacements of 0.05 m to 0.25 m, proportionally with the dynamic loads from 0.1 g to 0.5 g. Moreover, the displacements reach their peak value at the frequency ratio of the resonance case. Viscous boundaries are found sufficient for modelling excessive displacements due to dynamic loading. However, the displacements reveal that high vibrations (> 0.1 g for loose sand, > 0.2 g for dense sand) influencing the pile deformations are critical for the issues of settlements. This is more significant for the resonance case in order for ensuring sufficient design. Consequently, the findings from the study are promising good contributions for pile design under the dynamic effect.


Author(s):  
Kshama Roy ◽  
Bipul Hawlader ◽  
Shawn Kenny ◽  
Ian Moore

Buried pipelines are extensively used in onshore and offshore for transportation of hydrocarbons. The response of pipeline due to lateral and upward relative displacements is one of the major concerns in pipeline design. Both physical modeling and numerical analyses have been performed in the past to understand pipeline-soil interaction mechanisms. The numerical analyses are generally performed using finite element (FE) modeling techniques. For the pipelines buried in sand, a large number of analyses available in the literature have been performed using the Mohr-Coulomb model assigning constant values of angle of internal friction (ϕ′) and dilation (ψ). However, dense sand shows post-peak softening behavior and the behavior of sand also depends on mode of shearing, such as triaxial (TX), direct shear (DS) or direct simple shear (DSS) conditions. In the present study, FE analysis of buried pipelines in dense sand is presented. The first set of analyses are performed using the built-in Mohr-Coulomb model in Abaqus FE software with constant angles of internal friction and dilation, as typically used in previous FE analysis of pipeline-soil interaction. The second set of analyses are performed using a modified Mohr-Coulomb model where pre-peak hardening, post-peak softening, density and confining pressure dependent friction and dilation angles are considered. The FE analyses are performed using the Arbitrary Lagrangian-Eulerian (ALE) approach available in Abaqus/Explicit FE software. The modified Mohr-Coulomb model is implemented in Abaqus FE software using a user defined subroutine. Shear band formation due to strain localization and failure patterns for both lateral and upward pipeline-soil interactions are discussed from the simulations with MC and MMC models. FE results show that the MMC model can simulate the load-displacement behavior and failure pattern better than the simulations with the MC model.


Author(s):  
Arda Ozdiler ◽  
suleyman dayan ◽  
Burc Gencel ◽  
Gulbahar Isık-Ozkol

This in vitro study evaluated the influence of taper angles on the internal conical connections of implant systems and of the application of chlorhexidine gel as an antibacterial agent or a polyvinyl siloxane (PVS) sealant on the reverse torque values of abutment screws after dynamic loading. The current study tested four implant systems with different taper angles (5.4°, 12°, 45°, and 60°). Specimens were divided into three groups: control (neither chlorhexidine gel filled nor silicone sealed), 2% chlorhexidine gel-filled or silicone-sealed group, and group subjected to a dynamic load of 50 N at 1 Hz for 500,000 cycles prior to reverse torque measurements. Quantitative positive correlation was observed between the taper angle degree and the percentage of tightening torque loss. However, this correlation was significant only for the 60° connection groups except in the group in which a sealant was applied ( p = 0.013 for the control group, p = 0.007 for the chlorhexidine group). Percentages of decrease in the torque values of the specimens with silicone sealant application were significantly higher compared with both the control and chlorhexidine groups ( p = 0.001, p = 0.002, p = 0.001, and p = 0.002, respectively, according to the increasing taper angles); the percentage of decrease in torque values due to chlorhexidine application was statistically insignificant when compared with the control group. The application of gel-form chlorhexidine as an antibacterial agent does not significantly affect the stability of the implant–abutment connection under dynamic loads. PVS sealants may cause screw loosening under functional loads.


Sign in / Sign up

Export Citation Format

Share Document