Forskolin suppresses insulin gene transcription in islet β-cells through a protein kinase A-independent pathway

2003 ◽  
Vol 15 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Wei-Qun Ding ◽  
Maoqing Dong ◽  
Dora Ninova ◽  
Eileen L Holicky ◽  
Mark D Stegall ◽  
...  
2000 ◽  
Vol 279 (3) ◽  
pp. G605-G612 ◽  
Author(s):  
Damian G. Deavall ◽  
Raktima Raychowdhury ◽  
Graham J. Dockray ◽  
Rod Dimaline

The mechanisms by which neuroendocrine stimulants regulate CCK gene transcription are unclear. We examined promoter activation by pituitary adenylate cyclase-activating polypeptide (PACAP), a known CCK secretagogue, in the enteroendocrine cell line STC-1. The promoter region from −70 to −87 bp, relative to the transcriptional start site, contains a composite calcium/cyclic AMP response element (CRE)/activator protein 1 (AP1) site that may bind CRE binding protein (CREB) and AP1. PACAP (with IBMX) stimulated expression of an 87-bp construct 3.35 ± 0.36-fold but had no effect on a −70 construct. The effect was blocked by the protein kinase A inhibitor H-89 and by a dominant-negative CREB plasmid. Mutation of the CRE/AP1 site to a canonical CRE site did not affect the response to PACAP, but mutation to a canonical AP1 site prevented it. CREB phosphorylation was increased after PACAP treatment. Electrophoretic mobility shift assay and supershift analysis revealed that CREB and not AP1 bound to the CRE/AP1 site and that PACAP increased the proportion of phosphorylated CREB that was bound. We conclude that PACAP increases CCK gene expression via a cAMP-mediated pathway involving CREB phosphorylation by protein kinase A and activation of a composite CRE/AP1 site.


Endocrinology ◽  
2014 ◽  
Vol 155 (12) ◽  
pp. 4676-4685 ◽  
Author(s):  
Xiangchen Kong ◽  
Dan Yan ◽  
Jiangming Sun ◽  
Xuerui Wu ◽  
Hindrik Mulder ◽  
...  

Chronic hyperglycemia leads to pancreatic β-cell dysfunction characterized by diminished glucose-stimulated insulin secretion (GSIS), but the precise cellular processes involved are largely unknown. Here we show that pancreatic β-cells chronically exposed to a high glucose level displayed substantially increased amounts of stress fibers compared with β-cells cultured at a low glucose level. β-Cells at high glucose were refractory to glucose-induced actin cytoskeleton remodeling and insulin secretion. Importantly, F-actin depolymerization by either cytochalasin B or latrunculin B restored glucotoxicity-diminished GSIS. The effects of glucotoxicity on increasing stress fibers and reducing GSIS were reversed by Y-27632, a Rho-associated kinase (ROCK)-specific inhibitor, which caused actin depolymerization and enhanced GSIS. Notably, glucagon-like peptide-1-(7–36) amide (GLP-1), a peptide hormone that stimulates GSIS at both normal and hyperglycemic conditions, also reversed glucotoxicity-induced increase of stress fibers and reduction of GSIS. In addition, GLP-1 inhibited glucotoxicity-induced activation of RhoA/ROCK and thereby resulted in actin depolymerization and potentiation of GSIS. Furthermore, this effect of GLP-1 was mimicked by cAMP-increasing agents forskolin and 3-isobutyl-1-methylxanthine as well as the protein kinase A agonist 6-Bnz-cAMP-AM whereas it was abolished by the protein kinase A inhibitor Rp-Adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt. To establish a clinical relevance of our findings, we examined the association of genetic variants of RhoA/ROCK with metabolic traits in homeostasis model assessment index of insulin resistance. Several single-nucleotide polymorphisms in and around RHOA were associated with elevated fasting insulin and homeostasis model assessment index of insulin resistance, suggesting a possible role in metabolic dysregulation. Collectively these findings unravel a novel mechanism whereby GLP-1 potentiates glucotoxicity-diminished GSIS by depolymerizing F-actin cytoskeleton via protein kinase A-mediated inhibition of the RhoA-ROCK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document