EROS II proper motion survey for halo cool white dwarfs

2000 ◽  
Vol 87 (1-3) ◽  
pp. 495
Author(s):  
Bertrand Goldman
1982 ◽  
Vol 198 (2) ◽  
pp. 473-482 ◽  
Author(s):  
D. T. Wickramasinghe ◽  
D. A. Allen ◽  
M. S. Bessell

1989 ◽  
Vol 114 ◽  
pp. 15-23 ◽  
Author(s):  
James Liebert ◽  
Conard C. Dahn ◽  
David G. Monet

The luminosity function (LF) and total space density of white dwarfs in the solar neighborhood contain important information about the star formation history of the stellar population, and provide an independent method of measuring its age. The first empirical estimates of the LF for degenerate stars were those of Weidemann (1967), Kovetz and Shaviv (1976) and Sion and Liebert (1977). The follow-up investigations made possible by the huge Luyten Palomar proper motion surveys, however, added many more faint white dwarfs to the known sample. While the number of known cool white dwarfs grew to nearly one hundred, these did not include any that were much fainter intrinsically than the coolest degenerates found from the early Luyten, van Biesbroeck and Eggen-Greenstein lists.


1971 ◽  
Vol 42 ◽  
pp. 130-135 ◽  
Author(s):  
K. H. Böhm ◽  
J. Cassinelli

Outer convection zones of white dwarfs in the range 5800 K ≤ Teff ≤ 30000 K have been studied assuming that they have the same chemical composition as determined by Weidemann (1960) for van Maanen 2. Convection is important in all these stars. In white dwarfs Teff < 8000 K the adiabatic temperature gradient is strongly influenced by the pressure ionization of H, HeI and HeII which occurs within the convection zone. Partial degeneracy is also important.Convective velocities are very small for cool white dwarfs but they reach considerable values for hotter objects. For a white dwarf of Teff = 30000 K a velocity of 6.05 km/sec and an acoustic flux (generated by the turbulent convection) of 1.5 × 1011 erg cm−2 sec−1 is reached. The formation of white dwarf coronae is briefly discussed.


2019 ◽  
Vol 15 (S357) ◽  
pp. 170-174
Author(s):  
Terry D. Oswalt ◽  
Jay B. Holberg ◽  
Edward M. Sion

AbstractThe Gaia DR2 has dramatically increased the ability to detect faint nearby white dwarfs. The census of the local white dwarf population has recently been extended from 25 pc to 50 pc, effectively increasing the sample by roughly an order of magnitude. Here we examine the completeness of this new sample as a function of variables such as apparent magnitude, distance, proper motion, photometric color index, unresolved components, etc.


1989 ◽  
Vol 114 ◽  
pp. 236-239
Author(s):  
France C. Allard ◽  
Rainer Wehrse

In recent years cool white dwarfs have been studied for various aspects ( see e.g.Winget et al.,1987 Winget and van Horn, 1987, Koester, 1987, Llebert, 1980) and much effort has been Invested in attempts to interpret the energy distributions of these stars ( Greenstein, 1984, Zeldler-K.T. et al, 1986, Llebert et al., 1987, and others). However, it seems that in spite of these efforts the spectra in particular of the very cool objects with effective temperatures below about 6000 K are not yet fully under-stood, since they are extremely diverse and each objects needs special consideration. In addition, the analyses are extremely difficult because the principal constiuents of the atmospheres ( H, He ) and elements, which may donate the majority of electrons, are essentially invisible. Since usually only one ionlsatlon stage of an element is present, this implies that the gas pressure Pg is high ( compared e.g. to the solar photosphere ), the accurate value of Pg, however, cannot be determined reliably.


1979 ◽  
Vol 53 ◽  
pp. 417-425 ◽  
Author(s):  
Brian Warner

For isolated stars, identification as a white dwarf may be effected in several ways. The fundamental property of abnormally low luminosity can be detected through direct measurement of trigonometric parallax or indirectly through large proper motion (accompanied by appropriate photometric properties). The presence of greatly pressure broadened absorption lines is another unambiguous criterion. Rapid light oscillations of the kind reviewed by Robinson are another hallmark of a select group of white dwarfs. Any or all of these criteria may be used to classify a star as a white dwarf and in general can be applied to members of wide binary systems.


1989 ◽  
Vol 114 ◽  
pp. 454-457
Author(s):  
T.D. Oswalt ◽  
E.M. Sion

Luyten [1,2] and Giclas et al. [3,4] list over 500 known common proper motion binaries (CPMBs) which, on the basis of proper motion and estimated colors, are expected to contain at least one white dwarf (WD) component, usually paired with a late type main sequence (MS) star. Preliminary assessments of the CPMBs suggest that nearly all are physical pairs [5,6]. In this paper we address the issue of whether significant orbital expansion has occurred as a consequence of the post-MS mass loss expected to accompany the formation of the WDs in CPMBs.Though the CPMB sample remains largely unobserved, a spectroscopic survey of over three dozen CPMBs by Oswalt [5] found that nearly all faint components of Luyten and Giclas color class “a-f” and “+1”, respectively, or bluer were a WD. This tendency was also evident in a smaller sample studied by Greenstein [7]. Conversely, nearly all CPMBs having two components of color class “g-k” and “+3” or redder were MS+MS pairs. With the caveat that such criteria discriminate against CPMBs containing cool (but rare) WDs, they nonetheless provide a crude means of obtaining statistically significant samples for the comparison of orbital separations: 209 highly probable WD+MS pairs and 109 MS+MS pairs.


Sign in / Sign up

Export Citation Format

Share Document