scholarly journals The Luminosity Function of Magnitude and Proper‐Motion–selected Samples: The Case of White Dwarfs

2001 ◽  
Vol 547 (1) ◽  
pp. 252-263 ◽  
Author(s):  
Rene A. Mendez ◽  
Maria Teresa Ruiz
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
David Curtin ◽  
Jack Setford

Abstract Dark matter could have a dissipative asymmetric subcomponent in the form of atomic dark matter (aDM). This arises in many scenarios of dark complexity, and is a prediction of neutral naturalness, such as the Mirror Twin Higgs model. We show for the first time how White Dwarf cooling provides strong bounds on aDM. In the presence of a small kinetic mixing between the dark and SM photon, stars are expected to accumulate atomic dark matter in their cores, which then radiates away energy in the form of dark photons. In the case of white dwarfs, this energy loss can have a detectable impact on their cooling rate. We use measurements of the white dwarf luminosity function to tightly constrain the kinetic mixing parameter between the dark and visible photons, for DM masses in the range 10−5–105 GeV, down to values of ϵ ∼ 10−12. Using this method we can constrain scenarios in which aDM constitutes fractions as small as 10−3 of the total dark matter density. Our methods are highly complementary to other methods of probing aDM, especially in scenarios where the aDM is arranged in a dark disk, which can make direct detection extremely difficult but actually slightly enhances our cooling constraints.


1989 ◽  
Vol 114 ◽  
pp. 15-23 ◽  
Author(s):  
James Liebert ◽  
Conard C. Dahn ◽  
David G. Monet

The luminosity function (LF) and total space density of white dwarfs in the solar neighborhood contain important information about the star formation history of the stellar population, and provide an independent method of measuring its age. The first empirical estimates of the LF for degenerate stars were those of Weidemann (1967), Kovetz and Shaviv (1976) and Sion and Liebert (1977). The follow-up investigations made possible by the huge Luyten Palomar proper motion surveys, however, added many more faint white dwarfs to the known sample. While the number of known cool white dwarfs grew to nearly one hundred, these did not include any that were much fainter intrinsically than the coolest degenerates found from the early Luyten, van Biesbroeck and Eggen-Greenstein lists.


2019 ◽  
Vol 15 (S357) ◽  
pp. 170-174
Author(s):  
Terry D. Oswalt ◽  
Jay B. Holberg ◽  
Edward M. Sion

AbstractThe Gaia DR2 has dramatically increased the ability to detect faint nearby white dwarfs. The census of the local white dwarf population has recently been extended from 25 pc to 50 pc, effectively increasing the sample by roughly an order of magnitude. Here we examine the completeness of this new sample as a function of variables such as apparent magnitude, distance, proper motion, photometric color index, unresolved components, etc.


1980 ◽  
Vol 85 ◽  
pp. 157-163 ◽  
Author(s):  
Floor van Leeuwen

From a proper motion survey by Pels and photometric measurement of selected stars it was found that the Pleiades cluster extends till at least 496 from the centre, corresponding to 10 pc at a distance of 125 pc. It turns out that the luminosity function of the Pleiades is a function of the distance to the centre, the proportion of faint stars increasing with this distance. Because of this, the luminosity function as it was determined before flattened towards fainter stars, whereas for the total field with a diameter of 20 pc one finds a luminosity function that is still increasing at the faint end. Flare star observations in the Pleiades field show that the increase amounts to at least a factor 20 in the mass range 2 to 0.4 M⊙. Accurate proper motions of stars in the projected central field show a dispersion of velocities in the cluster of 700 m/sec. This could indicate a total mass of the Pleiades cluster of the order of 2000 M⊙.


Author(s):  
M. Hernanz ◽  
E. Garcia-Berro ◽  
J. Isern ◽  
R. Mochkovitch

1979 ◽  
Vol 53 ◽  
pp. 417-425 ◽  
Author(s):  
Brian Warner

For isolated stars, identification as a white dwarf may be effected in several ways. The fundamental property of abnormally low luminosity can be detected through direct measurement of trigonometric parallax or indirectly through large proper motion (accompanied by appropriate photometric properties). The presence of greatly pressure broadened absorption lines is another unambiguous criterion. Rapid light oscillations of the kind reviewed by Robinson are another hallmark of a select group of white dwarfs. Any or all of these criteria may be used to classify a star as a white dwarf and in general can be applied to members of wide binary systems.


1989 ◽  
Vol 114 ◽  
pp. 454-457
Author(s):  
T.D. Oswalt ◽  
E.M. Sion

Luyten [1,2] and Giclas et al. [3,4] list over 500 known common proper motion binaries (CPMBs) which, on the basis of proper motion and estimated colors, are expected to contain at least one white dwarf (WD) component, usually paired with a late type main sequence (MS) star. Preliminary assessments of the CPMBs suggest that nearly all are physical pairs [5,6]. In this paper we address the issue of whether significant orbital expansion has occurred as a consequence of the post-MS mass loss expected to accompany the formation of the WDs in CPMBs.Though the CPMB sample remains largely unobserved, a spectroscopic survey of over three dozen CPMBs by Oswalt [5] found that nearly all faint components of Luyten and Giclas color class “a-f” and “+1”, respectively, or bluer were a WD. This tendency was also evident in a smaller sample studied by Greenstein [7]. Conversely, nearly all CPMBs having two components of color class “g-k” and “+3” or redder were MS+MS pairs. With the caveat that such criteria discriminate against CPMBs containing cool (but rare) WDs, they nonetheless provide a crude means of obtaining statistically significant samples for the comparison of orbital separations: 209 highly probable WD+MS pairs and 109 MS+MS pairs.


Sign in / Sign up

Export Citation Format

Share Document