scholarly journals 19. Convection Zones and Coronae of White Dwarfs

1971 ◽  
Vol 42 ◽  
pp. 130-135 ◽  
Author(s):  
K. H. Böhm ◽  
J. Cassinelli

Outer convection zones of white dwarfs in the range 5800 K ≤ Teff ≤ 30000 K have been studied assuming that they have the same chemical composition as determined by Weidemann (1960) for van Maanen 2. Convection is important in all these stars. In white dwarfs Teff < 8000 K the adiabatic temperature gradient is strongly influenced by the pressure ionization of H, HeI and HeII which occurs within the convection zone. Partial degeneracy is also important.Convective velocities are very small for cool white dwarfs but they reach considerable values for hotter objects. For a white dwarf of Teff = 30000 K a velocity of 6.05 km/sec and an acoustic flux (generated by the turbulent convection) of 1.5 × 1011 erg cm−2 sec−1 is reached. The formation of white dwarf coronae is briefly discussed.


1979 ◽  
Vol 53 ◽  
pp. 165-178
Author(s):  
Gérard Vauclair

In this theoretical review about cool white dwarfs, I will restrict myself to the problem of the metallic content in white dwarf outer layers. The first section will be a short review of what we know about the metal abundances. The hottest presently known white dwarf showing metal in its spectrum is the DB GD 40 (Te = 15 000 K). This temperature will be considered here as the hot boundary of the “cool” white dwarfs. Many efforts have been recently devoted to the understanding of these metal abundances. Section 2 will be a summary of recent calculations of diffusion time scales in both hydrogen and helium white dwarfs. It will be seen that diffusion is so efficient in white dwarf conditions that the convection zone which develops in the envelope as the effective temperature decreases along the cooling sequence is never deep enough to bring back to the surface the metals which had previously diffused downwards. A discussion of the carbon white dwarfs, also called λ 4670 stars, will be presented in section 3. Recent calculations show that the convective mixing between a helium envelope and a carbon core would produce λ 4670 composition for only very special conditions and for this reason we believe that this is an improbable explanation for this type of white dwarfs. We clearly need another physical mechanism to compete with diffusion and to maintain an observable amount of metals in some cool white dwarf atmospheres. We discuss in section 4 the competition between diffusion and accretion. This seems a very promising mechanism in spite of the fact that considerable improvements are still needed in the theory of accretion. Substantial progress has to be made in this direction. A few problems related to this model are invoked in the conclusion.



2019 ◽  
Vol 15 (S357) ◽  
pp. 119-122
Author(s):  
S. Charpinet ◽  
P. Brassard ◽  
N. Giammichele ◽  
Gilles Fontaine

AbstractGiammichele et al. (2018) proposed a full determination, largely independent of evolution calculations, of the chemical composition and stratification inside the hot pulsating DB white dwarf KIC 08626021. However, Timmes et al. (2018) pointed out that neglecting the effects of neutrino cooling, such as in the static models used in Giammichele et al. study, could impact significantly the derived seismic solution and compromise conclusions drawn upon it. Here we present a reanalysis of KIC 08626021, using improved static models which now incorporate more realistic luminosity profiles that reflect the still significant energy losses induced by neutrino emission mechanisms in hot DB white dwarfs. We show that this effect has only a limited impact on the derived seismic model properties and, more importantly, that all the conclusions brought by Giammichele et al. (2018) remain entirely valid.



1971 ◽  
Vol 42 ◽  
pp. 67-76 ◽  
Author(s):  
J. B. Oke ◽  
H. L. Shipman

White dwarf stars are among the most challenging and interesting objects which can be studied. Because they represent the interiors of highly-evolved stars, the chemical composition can be enormously variable from object to object. Furthermore, because of the very large gravities, the composition of the atmosphere may be very different from that in the interior. The theory of the degenerate interior provides a relation among mass, radius and chemical composition. Since temperatures, effective gravities, and redshifts can, for certain stars, provide further relations between mass and radius, one can hope to make checks on the theory which are not possible with ordinary stars.



1989 ◽  
Vol 114 ◽  
pp. 176-187 ◽  
Author(s):  
Gérard Vauclair

While the efficiency of gravitational settling to produce chemically pure atmospheres in white dwarf stars was outlined for the first time 30 years ago (Schatzman 1958), the competing role of the radiation flux in the hot white dwarfs was considered only 10 years ago (Fontaine and Michaud 1979; Vauclair, Vauclair and Greenstein 1979). At that time, there was more motivation to understand how metals could reappear in the long lived cool non DA white dwarfs, where diffusion time scales are shorter by orders of magnitude than evolutionary time scales. Various processes were invoked to help restore some metal content in the white dwarf atmospheres: convection mixing and dredge up, accretion of interstellar matter. In cool white dwarfs, the radiative acceleration is negligeable in the diffusion process; this is not the case at the hot end of the sequence where radiation may balance gravity. The short lived hot white dwarfs just started to become exciting with the contemporary discoveries that i) some show metallic lines in their spectra, both hydrogen rich and hydrogen poor; ii) some of these are pulsating. In the following years, the number of hot white dwarfs revealing trace abundance of metals has increased, mainly owing to IUE observations.



1989 ◽  
Vol 111 ◽  
pp. 259-259
Author(s):  
Arthur N. Cox ◽  
Sumner G. Starrfield

AbstractAfter the discovery of pulsations in white dwarfs, predictions were made that these DA and the hotter DB stars should be pulsating in radial modes with periods of a few seconds or less. The mechanisms are the normal kappa and gamma effects that periodically block the flow of radiative luminosity and the blocking effect of the frozen-in convection at the bottom of the convection zone. Blue edges of the instability strips are between 12,000K and 13,000K for the DA and between 32,000K and 33,000K for the DB variables. Extensive observations, however, have shown that these stars pulsate only in the few-hundred-second nonradial modes and not in any few-second radial modes. We have added the time dependent convection model of Cox, Brownlee, and Eilers (1966) to our pulsation analyses to further investigate the white dwarf radial modes. Since the time scale of the convection is usually short compared to the radial pulsation periods, convection is able to carry luminosity rapidly enough to nullify the kappa and gamma effects periodic radiation blocking. We find that most, and maybe all, radial pulsations for 0.6 solar mass carbon-oxygen white dwarfs with thin hydrogen or helium surface layers are stabilized for both these DA and DB classes, now finally in agreement with observations.



1979 ◽  
Vol 53 ◽  
pp. 184-185
Author(s):  
R. Wehrse ◽  
J. Liebert

The cool white dwarf stars G 128-7 and G 165-7 have a quite different character: While the line spectrum of G 165-7 is the richest of all white dwarfs known, G 128-7 shows only a strong Hα line (Wλ ≈ 5.5 Å) and a much weaker Hβ line (Wλ ≈ 1 Å).



Author(s):  
Mukremin Kilic ◽  
A Bédard ◽  
P Bergeron

Abstract We present high-resolution spectroscopy of two nearby white dwarfs with inconsistent spectroscopic and parallax distances. The first one, PG 1632+177, is a 13th magnitude white dwarf only 25.6 pc away. Previous spectroscopic observations failed to detect any radial velocity changes in this star. Here, we show that PG 1632+177 is a 2.05 d period double-lined spectroscopic binary (SB2) containing a low-mass He-core white dwarf with a more-massive, likely CO-core white dwarf companion. After L 870-2, PG 1632+177 becomes the second closest SB2 white dwarf currently known. Our second target, WD 1534+503, is also an SB2 system with an orbital period of 0.71 d. For each system, we constrain the atmospheric parameters of both components through a composite model-atmosphere analysis. We also present a new set of NLTE synthetic spectra appropriate for modeling high-resolution observations of cool white dwarfs, and show that NLTE effects in the core of the Hα line increase with decreasing effective temperature. We discuss the orbital period and mass distribution of SB2 and eclipsing double white dwarfs with orbital constraints, and demonstrate that the observed population is consistent with the predicted period distribution from the binary population synthesis models. The latter predict more massive CO + CO white dwarf binaries at short (&lt;1 d) periods, as well as binaries with several day orbital periods; such systems are still waiting to be discovered in large numbers.



Sign in / Sign up

Export Citation Format

Share Document