scholarly journals Spectroscopic ellipsometry study of the layer structure and impurity content in Er-doped nanocrystalline silicon thin films

2001 ◽  
Vol 308-310 ◽  
pp. 374-377 ◽  
Author(s):  
M. Losurdo ◽  
M.F. Cerqueira ◽  
M.V. Stepikhova ◽  
E. Alves ◽  
M.M. Giangregorio ◽  
...  
2000 ◽  
Vol 609 ◽  
Author(s):  
Sukti Hazra ◽  
Mitsuyuki Yamanaka ◽  
Isao Sakata ◽  
Toshiyuki Tsutsumi ◽  
Tatsuro Maeda ◽  
...  

ABSTRACTUltra-thin hydrogenated amorphous silicon thin films have been deposited by thermal chemical vapor deposition (CVD) to prepare smooth top surface of the films avoiding the ion bombardment. Rapid thermal oxidation of thermal CVD a-Si:H results in nanocrystalline dots in the ultra-thin silicon films. Spectroscopic ellipsometry (SE) and high resolution transmission electron microscopy (TEM) have been used to investigate the optical and structural properties of both ultra-thin a-Si:H and nanocrystalline silicon films. To analyze the ellipsometric data of ultra-thin a-Si:H films, a new parameterization i.e., the combination of Sellmeier law and four Lorentz peaks, has been successfully introduced. Width of the Lorentz peaks are directly related with the change of optical functions with the thickness of a-Si:H films. It has been certified that the dense Si matrix with smaller degree of disorder is formed when the thickness exceeds 8nm and the films with the thickness of less than 3.8 nm becomes voided. To interpret the ellipsometric data for nanocrystalline silicon films, three layer model (SiO2, poly-Si+a-Si+void and SiO2) has been adapted. It is inferred from SE and TEM analyses that the size and the density of nanocrystalline dots can be controlled by the morphology of initial ultra-thin a-Si:H films and RTO conditions.


1998 ◽  
Vol 536 ◽  
Author(s):  
A. B. Pevtsov ◽  
N. A. Feoktistov ◽  
V. G. Golubev

AbstractThin (<1000 Å) hydrogenated nanocrystalline silicon films are widely used in solar cells, light emitting diodes, and spatial light modulators. In this work the conductivity of doped and undoped amorphous-nanocrystalline silicon thin films is studied as a function of film thickness: a giant anisotropy of conductivity is established. The longitudinal conductivity decreases dramatically (by a factor of 109 − 1010) as the layer thickness is reduced from 1500 Å to 200 Å, while the transverse conductivity remains close to that of a doped a- Si:H. The data obtained are interpreted in terms of the percolation theory.


2006 ◽  
Vol 514-516 ◽  
pp. 1116-1120 ◽  
Author(s):  
M.Fátima Cerqueira ◽  
Margarita Stepikhova ◽  
Maria Losurdo ◽  
Teresa Monteiro ◽  
Manuel J. Soares ◽  
...  

Erbium doped nanocrystalline silicon thin films were produced by reactive magnetron r.f. sputtering. Their structural and chemical properties were studied by micro-Raman, spectroscopic ellipsometry and Rutherford backscattering spectroscopy. Films with different crystalline fraction and crystallite size were deposited by changing the deposition parameters. The impact of the composition and structure of Erbium ions environment on the 1.5 µm photoluminescence is discussed.


2002 ◽  
Vol 403-404 ◽  
pp. 91-96 ◽  
Author(s):  
C. Gonçalves ◽  
S. Charvet ◽  
A. Zeinert ◽  
M. Clin ◽  
K. Zellama

1997 ◽  
Vol 46 (10) ◽  
pp. 2015
Author(s):  
CHEN GUO ◽  
GUO XIAO-XU ◽  
ZHU MEI-FANG ◽  
SUN JING-LAN ◽  
XU HUAI-ZHE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document