Spectroscopic Ellipsometry for the Characterization of the Morphology of Ultra-thin Thermal CVD Amorphous and Nanocrystalline Silicon Thin Films

2000 ◽  
Vol 609 ◽  
Author(s):  
Sukti Hazra ◽  
Mitsuyuki Yamanaka ◽  
Isao Sakata ◽  
Toshiyuki Tsutsumi ◽  
Tatsuro Maeda ◽  
...  

ABSTRACTUltra-thin hydrogenated amorphous silicon thin films have been deposited by thermal chemical vapor deposition (CVD) to prepare smooth top surface of the films avoiding the ion bombardment. Rapid thermal oxidation of thermal CVD a-Si:H results in nanocrystalline dots in the ultra-thin silicon films. Spectroscopic ellipsometry (SE) and high resolution transmission electron microscopy (TEM) have been used to investigate the optical and structural properties of both ultra-thin a-Si:H and nanocrystalline silicon films. To analyze the ellipsometric data of ultra-thin a-Si:H films, a new parameterization i.e., the combination of Sellmeier law and four Lorentz peaks, has been successfully introduced. Width of the Lorentz peaks are directly related with the change of optical functions with the thickness of a-Si:H films. It has been certified that the dense Si matrix with smaller degree of disorder is formed when the thickness exceeds 8nm and the films with the thickness of less than 3.8 nm becomes voided. To interpret the ellipsometric data for nanocrystalline silicon films, three layer model (SiO2, poly-Si+a-Si+void and SiO2) has been adapted. It is inferred from SE and TEM analyses that the size and the density of nanocrystalline dots can be controlled by the morphology of initial ultra-thin a-Si:H films and RTO conditions.

1997 ◽  
Vol 46 (10) ◽  
pp. 2015
Author(s):  
CHEN GUO ◽  
GUO XIAO-XU ◽  
ZHU MEI-FANG ◽  
SUN JING-LAN ◽  
XU HUAI-ZHE ◽  
...  

2009 ◽  
Vol 1153 ◽  
Author(s):  
Yuri Vygranenko ◽  
Ehsanollah Fathi ◽  
Andrei Sazonov ◽  
Manuela Vieira ◽  
Gregory Heiler ◽  
...  

AbstractWe report on structural, electronic, and optical properties of boron-doped, hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) at a substrate temperature of 150°C. Film properties were studied as a function of trimethylboron-to-silane ratio and film thickness. The film thickness was varied in the range from 14 to 100 nm. The conductivity of 60 nm thick films reached a peak value of 0.07 S/cm at a doping ratio of 1%. As a result of amorphization of the film structure, which was indicated by Raman spectra measurements, any further increase in doping reduced conductivity. We also observed an abrupt increase in conductivity with increasing film thickness ascribed to a percolation cluster composed of silicon nanocrystallites. The absorption loss of 25% at a wavelength of 400 nm was measured for the films with optimized conductivity deposited on glass and glass/ZnO:Al substrates. A low-leakage, blue-enhanced p-i-n photodiode with an nc-Si p-layer was also fabricated and characterized.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 759
Author(s):  
Luana Mazzarella ◽  
Anna Morales-Vilches ◽  
Lars Korte ◽  
Rutger Schlatmann ◽  
Bernd Stannowski

Doped hydrogenated nanocrystalline (nc-Si:H) and silicon oxide (nc-SiOx:H) materials grown by plasma-enhanced chemical vapor deposition have favourable optoelectronic properties originated from their two-phase structure. This unique combination of qualities, initially, led to the development of thin-film Si solar cells allowing the fabrication of multijunction devices by tailoring the material bandgap. Furthermore, nanocrystalline silicon films can offer a better carrier transport and field-effect passivation than amorphous Si layers could do, and this can improve the carrier selectivity in silicon heterojunction (SHJ) solar cells. The reduced parasitic absorption, due to the lower absorption coefficient of nc-SiOx:H films in the relevant spectral range, leads to potential gain in short circuit current. In this work, we report on development and applications of hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) from material to device level. We address the potential benefits and the challenges for a successful integration in SHJ solar cells. Finally, we prove that nc-SiOx:H demonstrated clear advantages for maximizing the infrared response of c-Si bottom cells in combination with perovskite top cells.


2010 ◽  
Vol 663-665 ◽  
pp. 1171-1174 ◽  
Author(s):  
Yan Qing Guo ◽  
Rui Huang ◽  
Jie Song ◽  
Xiang Wang ◽  
Yi Xiong Zhang

Nanocrystalline silicon films have been fabricated from SiH4 diluted with H2 in very high frequency (40.68 MHz) plasma enhanced chemical vapor deposition system at low temperatures (250oC). The influence of pressure on the structural properties of nanocrystalline silicon films has been investigated. The experimental results reveal that a very high hydrogen dilution is needed to crystallize the film grown at high pressure. If the hydrogen dilution is not high enough, the film could also be crystallized through lowering the pressure. Furthermore, the crystallinity and grain size increase with decreasing the pressure. These results could be attributed to the increase of ion bombardment energy and the higher atomic hydrogen flux toward the growing film surface at lower pressures.


2001 ◽  
Vol 308-310 ◽  
pp. 374-377 ◽  
Author(s):  
M. Losurdo ◽  
M.F. Cerqueira ◽  
M.V. Stepikhova ◽  
E. Alves ◽  
M.M. Giangregorio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document