Neutron diffraction measurements for the determination of heat treatment effectiveness in generating compressive residual stress in an automotive crown gear

2000 ◽  
Vol 276-278 ◽  
pp. 925-926 ◽  
Author(s):  
G Albertini ◽  
G Bruno ◽  
F Fiori ◽  
E Girardin ◽  
A Giuliani ◽  
...  
2004 ◽  
Vol 126 (3) ◽  
pp. 284-292 ◽  
Author(s):  
G. Bruno ◽  
B. D. Dunn

The residual stress (RS) in two curved plates cut from a large welded propellant tank for spacecrafts was investigated nondestructively by neutron and laboratory x-ray diffraction. Each plate had two weld beads symmetric to a central monoblock reinforcement. One plate had received a post-weld heat-treatment. The two nondestructive test techniques successfully determined both the bulk (thickness averaged) and the surface stress state, due to the highly different penetration of these radiations in metals. In the as-welded tank, both neutrons and x-rays show a stress level (both in the axial and hoop directions) higher in the heat affected zone (HAZ) than in the weld pool (300 against 160 MPa). A considerable degree of relaxation annealing was observed by neutron diffraction after the application of the heat treatment. In this case, the hoop stress in the HAZ relaxes from about 300 to about 100 MPa. X-rays also permitted the separate determination of the α and β-phase stresses and the calculation of the macro-RS. The latter showed the bending deformation resulting from the cut of the plates from the original tank. The average stress measured by x-rays was found to be very similar to the RS obtained by neutron diffraction technique.


2014 ◽  
Vol 783-786 ◽  
pp. 692-697 ◽  
Author(s):  
Andrew Clark ◽  
Randy J. Bowers ◽  
Derek O. Northwood

The effects of heat treatment on distortion, residual stress, and retained austenite were compared for case-carburized 4320 steel, in both the austempered and quench-and-tempered condition. Navy C-ring samples were used to quantify both size and shape distortions, as well as residual stress. The austempering heat treatment produced less distortion and a higher surface residual stress. Both hoop and axial stresses were measured; the difference between them was less than seven percent in all cases. Depth profiles were obtained for residual stress and retained austenite from representative C-ring samples for the austempered and quench-and-tempered heat treatment conditions. Austempering maintained a compressive residual stress to greater depths than quench-and-tempering. Quench-and-tempering also resulted in lower retained austenite amounts immediately beneath the surface. However, for both heat treatments, the retained austenite content was approximately one percent at depths greater than 0.5 mm.


Author(s):  
Christopher M. Gill ◽  
Paul Hurrell ◽  
John Francis ◽  
Mark Turski

This paper describes the design optimisation of an SA508 ferritic steel ring weld specimen using FE modelling techniques. The aim was to experimentally and analytically study the effect of post weld heat treatment upon a triaxial residual stress field. Welding highly constrained geometries, such as those found in some pressure vessel joints, can lead to the formation of highly triaxial stress fields. It is thought that application of post weld heat treatments will not fully relax hydrostatic stress fields. Therefore a ferritic multi-pass ring weld specimen was designed and optimised, using 2D finite element modelling, to generate a high magnitude triaxial stress field. The specimen thickness and weld-prep geometry was optimised to produce a large hydrostatic stress field and still allow efficient use of neutron diffraction to measure the residual stress. This paper reports the development of the test specimen geometry and compares the results of welding FE analysis and neutron diffraction measurements. Welding residual stresses were experimentally determined using neutron diffraction; both before post weld heat treatment. Three dimensional moving heat source weld finite element modelling has been used to predict the residual stresses generated by the welding process used. Finite element modelling examined the effect of phase transformation upon the residual stress field produced by welding. The relaxation of welding stresses by creep during post weld heat treatment has also been modelled. Comparisons between the modelled and measured as-welded residual stress profiles are presented. This work allows discussion of the effect of post weld heat treatment of triaxial stress fields and determines if finite element modelling is capable of correctly predicting the stress relaxation.


2010 ◽  
Vol 123-125 ◽  
pp. 479-482
Author(s):  
Hyo Soo Lee ◽  
Hai Joong Lee

The effectiveness of residual stress on forming copper patterns of printed circuit board was investigated during applied thermal conditions. Generally, the electrolytic copper foil showed a compressive residual stress about -55~-60MPa as received, which easily caused to form copper patterns irregularly when the pattern was etched finely. The compressive residual stress was relaxed with applying heat-treatment for a few hours. However, we observed that the compressed residual stress of copper foil tended to be relaxed, constant, and compressed again during heat-treatment process, which is mainly considered as that the grain of copper is grown restrictively within a Cu thin foil layer. We suggested a quantitative method for controlling grain size, grain distribution and relaxing stress of copper foil, which was very helpful for increasing an etching factor to decrease pattern width.


2012 ◽  
Vol 421 (1-3) ◽  
pp. 64-72 ◽  
Author(s):  
V.V. Sumin ◽  
I.V. Papushkin ◽  
R.N. Vasin ◽  
А.M. Venter ◽  
А.М. Balagurov

2021 ◽  
Author(s):  
Anthony Lombardi

Lightweighting has become an important factor in the automotive industry due to stringent government regulations on fuel consumption and increased environmental awareness. Aluminum alloys are 65% lighter than cast iron enabling significant weight reduction. However, there are several significant challenges associated to the use of hypoeutectic Al-Si alloys in engine block applications. This dissertation investigated the factors influencing the susceptibility of in-service cylinder distortion as it is deleterious to engine operating efficiency, leading to environmental (increased carbon emissions) and economic (expensive recalls) repercussions. The initial segment of this dissertation sought to quantitatively confirm the cause of cylinder distortion by investigating distorted and undistorted service tested engine blocks. This analysis involved measurement of macro-distortion using a co-ordinate measuring machine, in-depth microstructural analysis, measurement of tensile properties, and residual stress mapping along the length of the cylinder bores (neutron diffraction). Upon determining the cause of distortion, the second phase of this project optimized the solution heat treatment parameters to mitigate future distortion in the engine blocks. This optimization was carried out by varying heat treatment parameters to maximize engine block strength. In addition, a pioneering application of in-situ neutron diffraction, along with a unique engine heating system, was used to develop a time-dependent correlation of residual stress relief during heat treatment, assisting in process optimization. The results indicate that the distorted engine block had high tensile residual stress, specifically at cylinder depths greater than 30 mm, while the undistorted block had mainly compressive stress. The maximum distortion occurred near the center portion of the cylinder (~60 mm), which had a combination of coarse microstructure (lower strength) and high tensile residual stress. As such,distortion can be prevented via maximization of strength and reduction in tensile residual stress. Lab scale castings and in-situ neutron diffraction were used to successfully develop an optimal heat treatment process to increase engine block integrity. These experiments found that solution heat treatment at 500 °C for 2 h increased tensile yield strength by 15-20% over engines produced using the current process. Furthermore, tensile residual stress was completely relieved by this heat treatment, reducing the susceptibility to in-service distortion. Solutionizing at temperatures above 500 °C was deemed unsuitable for engine block production due to incipient melting, which deteriorates strength.


2008 ◽  
Vol 2008 (27) ◽  
pp. 231-243 ◽  
Author(s):  
M. Turski ◽  
J. A. Francis ◽  
P. J. Withers

Sign in / Sign up

Export Citation Format

Share Document