Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel

2004 ◽  
Vol 145 (1) ◽  
pp. 46-58 ◽  
Author(s):  
M.Y Noordin ◽  
V.C Venkatesh ◽  
S Sharif ◽  
S Elting ◽  
A Abdullah
2013 ◽  
Vol 307 ◽  
pp. 170-173 ◽  
Author(s):  
Girish Kant ◽  
Vaibhav Rao V ◽  
Kuldip Singh Sangwan

This paper focuses on the development of a predictive model using the measured forces acting on the cutting tool during turning operation of AISI 1045 Steel using a Tungsten Carbide cutting tool insert. On the basis of the experimental results, second order mathematical model is developed in terms of machining parameters by using the Response Surface Methodology (RSM). The results are analyzed statistically and graphically. It has been observed that the predicted values using RSM also follow the same trend as given by the measured values.


Author(s):  
Kyung-Hee Park ◽  
Patrick Y. Kwon

Face milling tests on AISI 1045 steel were performed to study the flank wear of multilayered coated carbide tools. The cutting tools were dual (TiN/TiAlN) and triple (TiN/Al2O3/TiCN) layered, coated carbide inserts processed by PVD and CVD respectively. As expected, the depth of cut (DOC) did not play an important role on the development of flank wear while the cutting speed had a significant role in the development of flank wear. Using confocal laser scanning microscopy (CLSM) and wavelet transform, the flank wear evolution was analyzed and abrasive wear was found to be a dominant tool wear mechanism. Adhesion of the work material was also observed after the carbide substrate was exposed. Edge chipping and micro-fracture were additional tool failure modes. After comparing the performance of the two inserts, we concluded that the dual layer coating was superior to the triple layer coating under various cutting conditions mainly due to the benefit coming from the coating processes themselves. It was claimed that the superior performance of the multilayer coating came from preventing the gross crack-induced removal of coating materials by propagating the fracture along the coating interfaces. However, no such observations were found in our milling experiment. Therefore, the hardness of the coating materials is the most important criteria for the development of flank wear.


2011 ◽  
Vol 223 ◽  
pp. 286-295 ◽  
Author(s):  
Cédric Courbon ◽  
Tarek Mabrouki ◽  
Joël Rech ◽  
Denis Mazuyer ◽  
Enrico D'Eramo

The present work proposes to enhance the thermal interface denition in Finite Element (FE) simulations of machining. A user subroutine has been developed in Abaqus/Explicit © to implement a new experimentally-based heat partition model extracted from tribological tests. A 2D Arbitrary-Lagragian-Eulerian (ALE) approach is employed to simulate dry orthogonal cutting of AISI 1045 steel with coated carbide inserts. Simulation results are compared to experimental ones over a whole range of cutting speeds and feed rates in terms of average cutting forces, chip thickness, tool chip contact length and heat flux. This study emphasizes that heat transfer and temperature distribution in the cutting tool are drastically in uenced by the thermal formulation used at the interface. Consistency of the numerical results such as heat flux transmitted to the tool, peak temperature as well as hot spot location can be denitively improved.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5231
Author(s):  
Evandro Paese ◽  
Martin Geier ◽  
Fabiano R. Rodrigues ◽  
Tadeusz Mikolajczyk ◽  
Mozammel Mia

In this study, an experimental and statistic investigation approach based on analysis of variance (ANOVA) and response surface methodology (RSM) techniques was performed to find the significant main effects and two-factor interaction effects and to determine how the controllable factors such as cutting speed, feed rate, depth of cut (DOC), tool nose radius, substrate and coating method of cutting tools influence surface quality in turning of AISI 1045 steel. The first optimal or near-optimal conditions for the quality of the generated surface and the second ones, including maximum material removal rate, were established using the proposed regression equations. The group mean roughness of the turned workpieces was lower from using chemical vapor deposition (CVD)-coated carbide inserts than the group means of other types of inserts; however they could not achieve the specific lowest roughness. The physical vapor deposition (PVD)-coated carbide and cermet inserts achieved the best surface quality when the specific combinations within the range interval of controllable factors were used in the experiment, showing that they may be applied to finish turning processes or even to particular high material removal rate conditions associated with the lowest roughness.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Hamdi Ben Abdelali ◽  
Cedric Courbon ◽  
Joël Rech ◽  
Wacef Ben Salem ◽  
Abdelwaheb Dogui ◽  
...  

The characterization of frictional phenomena at the tool-chip-workpiece interface in metal cutting remains a challenge. This paper aims at identifying a friction model and a heat partition model at this interface during the dry cutting of an AISI1045 steel with TiN coated carbide tools. A new tribometer, based on a modified pin-on-ring system, has been used in order to reach relevant values of pressures, temperatures, and sliding velocities. Additionally a 3D Arbitrary Lagrangian Eulerian model (A.L.E.) numerical model simulating the frictional test has been developed in order to extract local parameters around the spherical pin, such as average contact pressure, average local sliding velocity, and average contact temperature, from experimental macroscopic measurements. A large range of sliding velocities [0.083–5 m/s] has been investigated. It has been shown that friction coefficient and heat partition coefficient are mainly dependant on local sliding velocity at the interface. Three friction regimes have been identified. These experimental and numerical results provide a better understanding of the tribological phenomena along the tool-chip-workpiece interfaces in dry machining of an AISI 1045 steel with a TiN coated carbide tool. Finally a new friction model and heat partition model has been developed for implementation in a numerical cutting model.


2018 ◽  
Vol 2 (4) ◽  
pp. 66 ◽  
Author(s):  
Luis Hernández González ◽  
Yassmin Seid Ahmed ◽  
Roberto Pérez Rodríguez ◽  
Patricia Zambrano Robledo ◽  
Martha Guerrero Mata

The manufacturing industry aims to produce many high quality products efficiently at low cost, thereby motivating companies to use advanced manufacturing technologies. The use of high-speed machining is increasingly widespread; however, it lacks a deep-rooted knowledge base needed to facilitate implementation. In this paper, response surface methodology (RSM) has been applied to determine the optimum cutting conditions leading to minimum flank wear in high-speed dry turning on AISI 1045 steel. The mathematical models in terms of machining parameters were developed for flank wear prediction using RSM on the basis of experimental results. The high speed turning experiments were carried out with two coated carbide and a cermet inserts using AISI 1045 steel as work material at different cutting speeds and machining times. The models selected for optimization were validated through the Pareto principle. Results showed the GC4215 insert to be the most optimal option, because it did not reach the cutting tool life limit and could be used for the whole range of cutting parameters selected. To quantitatively evaluate the usefulness of the cutting tools, it was proposed the coefficient of use of the tools from the results of the contour graphs. The GC4215 insert showed 100% effectiveness, followed by the GC4225 with 98.4%, and finally, the CT5015 insert with 83%.


Author(s):  
N. Suresh Kumar Reddy ◽  
P. Venkateswara Rao

Coolants dissipate the heat generated during machining and hence improve productivity, machinability, etc. However, the use of cutting fluids in machining operations may seriously degrade the quality of environment. So, in recent years researchers have started machining with the use of solid lubricants with the aim of improving machining performance and overcome some of the limitations that arise with the use of cutting fluids or while machining dry. This paper deals with an investigation on using graphite as a solid lubricant to reduce the heat generated at the milling zone for improving the surface roughness of the machined AISI 1045 steel. An experimental setup has been developed to maintain constant flow rate of graphite powder continuously on to the workpiece and tool interface zone. The experimental studies have been conducted to see the effect of tool geometry (radial rake angle and nose radius) and cutting conditions (cutting speed and feed rate) on the machining response such as surface finish in solid lubricant assisted machining using four fluted solid TiAlN coated carbide cutters. Results indicate that there is a considerable improvement in the performance of milling AISI 1045 steel using graphite as a solid lubricant when compared with machining with cutting fluids. An attempt has also been made to select optimum tool geometry and cutting conditions in end milling with graphite as a solid lubricant by using the prediction model obtained from these experimental results.


Sign in / Sign up

Export Citation Format

Share Document