Effect of die geometry on the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy and numerical analysis of the cooling behavior

1999 ◽  
Vol 96 (1-3) ◽  
pp. 188-197 ◽  
Author(s):  
J.H. Lee ◽  
H.S. Kim ◽  
S.I. Hong ◽  
C.W. Won ◽  
S.S. Cho ◽  
...  
2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Zhongchen Zhang ◽  
Michael Collins ◽  
Eric Lau ◽  
Chris Botting ◽  
Majid Bahrami

Abstract Effect of anodization on the thermal performance of naturally cooled heat sinks in power electronic devices made of die-cast aluminum alloy A380 and machined aluminum alloy 6061 was investigated experimentally and numerically. Various types of anodization were examined with different thickness of anodic aluminum oxide layer (AAO), pore size distributions, and surface coloring conditions. A customized natural convection and thermal radiation experimental chamber was built to measure the cooling capacity and heat sink temperatures. A 3D numerical model was also developed and validated against the collected data to provide more details into the contribution of the radiation heat transfer. The total emittance of the anodized samples was determined by a Fourier transform infrared reflectometer (FTIR) spectroscopy method. The results show a significant improvement in total hemispherical emissivity from 0.14 to 0.92 in anodized die-cast aluminum samples. This increase resulted in a considerable reduction in overall thermal resistance, up to 15%; where up to 41% of the total heat dissipation was contributed by thermal radiation. In spite of the rather distinguishable surface morphologies, the measurements suggested that thermal emissivity of the anodized die-cast Al A380 and Al alloy 6061 samples were in the same range.


2014 ◽  
Vol 680 ◽  
pp. 11-14
Author(s):  
Ke Ren Shi ◽  
Sirikul Wisutmethangoon ◽  
Jessada Wannasin ◽  
Thawatchai Plookphol

In this study, semi-solid Al-Mg-Si alloy (AC4C) was produced by using the Gas Induced Semi-Solid (GISS) die casting process. The tensile strength and ductility of the semi-solid die cast Al alloy (GISS-DC) after T6 heat treatment were investigated and compared with those of the conventional liquid die casting (CLDC). The microstructures of GISS-DC and CLDC observed by an optical microscopy were presented. The ultimate tensile strength (UTS) and yield strength (0.2% YS) of GISS-DC are compatible with those of the CLDC. However, the GISS-DC has better ductility than the CLDC, this may be due to the smaller and more globular primary α-Al phase and rounder shaped-Si particle microstructures presented in the GISS-DC. Common shrinkage pores and defects were also observed by SEM from the fracture surfaces of both alloys.


2000 ◽  
Vol 005.2 (0) ◽  
pp. 3-4
Author(s):  
Masahiro GOTO ◽  
Takaei YAMAMOTO ◽  
Hironobu NISITANI ◽  
Norio KAWAGOISHI ◽  
Naomichi YAMAMOTO

2010 ◽  
Vol 638-642 ◽  
pp. 1579-1584 ◽  
Author(s):  
A.V. Nagasekhar ◽  
Carlos H. Cáceres ◽  
Mark Easton

Specimens of rectangular and circular cross section of a Mg-9Al binary alloy have been tensile tested and the cross section of undeformed specimens examined using scanning electron microscopy. The rectangular cross sections showed three scales in the cellular intermetallics network: coarse at the core, fine at the surface and very fine at the corners, whereas the circular ones showed only two, coarse at the core and fine at the surface. The specimens of rectangular cross section exhibited higher yield strength in comparison to the circular ones. Possible reasons for the observed increased strength of the rectangular sections are discussed.


2009 ◽  
Vol 57 (13) ◽  
pp. 3902-3915 ◽  
Author(s):  
T.F. Morgeneyer ◽  
J. Besson ◽  
H. Proudhon ◽  
M.J. Starink ◽  
I. Sinclair

Sign in / Sign up

Export Citation Format

Share Document