Diffusion-reaction theory for conductance response in metal oxide gas sensing thin films

2000 ◽  
Vol 66 (1-3) ◽  
pp. 228-231 ◽  
Author(s):  
Honglong Lu ◽  
Wencai Ma ◽  
Jianhua Gao ◽  
Jianming Li
2007 ◽  
Vol 121-123 ◽  
pp. 1341-1346
Author(s):  
Jian Ping Xing ◽  
Juan Li ◽  
Lei Zhou ◽  
Jian Ming Li ◽  
Nan Yuan Qiu

The characters of metal oxide gas sensing nano-thin films are studied. The formula of the dynamical thickness effect characteristic time is given. The relation of the sensitivity Sn and the film thickness l, the character of existing the optimum thickness, the character of the change of conductance activity energy with the film thickness are given also. The idea of diffusion reaction of gas sensing mechanism and the idea of mesoscopic effect in the nano-thin films are proposed.


Author(s):  
Jian Ping Xing ◽  
Juan Li ◽  
Lei Zhou ◽  
Jian Ming Li ◽  
Nan Yuan Qiu

2008 ◽  
Vol 55-57 ◽  
pp. 285-288 ◽  
Author(s):  
C. Oros ◽  
Anurat Wisitsoraat ◽  
Pichet Limsuwan ◽  
M. Horpathum ◽  
V. Patthanasettakul ◽  
...  

Metal oxide thin film materials, including SnO2, TiO2, WO3, MoO3, ZnO, have been widely studied for gas sensing applications. However, new gas-sensing materials with distinct and diverse characteristics for new sensing applications such as electronic nose are still being explored. Presently, gas sensing properties of other metal oxides have not yet been extensively explored. Chromium oxide is an interesting metal oxide for gas sensor because of its temperature stability and moderate electrical conductivity. Nevertheless, there have been very few studies on gas sensing behaviors of this material. In this work, chromium oxide thin films were systematically studied by reactive sputtering with varying sputtering parameter including oxygen flow rate. Structural characterization by means of scanning electron microscopy and X-ray diffraction reveals that the films have sub-micometer grain-size with Rhombohedral phase of Cr2O3. Gas-sensing performances of sputtered chromium oxide thin film have been characterized toward ethanol and acetylene sensing. It was found that chromium oxide thin films exhibit p-type conductivity with increased resistance when exposed to ethanol and acetylene, which are reducing gases. In addition, sensitivity to both acetylene and ethanol tend to improve as oxygen flow rate increases. Furthermore, the chromium oxide thin films exhibit high sensitivity at moderate temperature of 250-300 °C with minimum operating temperature of 200 °C.


Vacuum ◽  
2012 ◽  
Vol 86 (5) ◽  
pp. 495-506 ◽  
Author(s):  
G. Kiriakidis ◽  
K. Moschovis ◽  
I. Kortidis ◽  
V. Binas

2017 ◽  
Vol 164 (4) ◽  
pp. B159-B167 ◽  
Author(s):  
John P. Baltrus ◽  
Gordon R. Holcomb ◽  
Joseph H. Tylczak ◽  
Paul R. Ohodnicki

Author(s):  
M. A. Kirk ◽  
M. C. Baker ◽  
B. J. Kestel ◽  
H. W. Weber

It is well known that a number of compound superconductors with the A15 structure undergo a martensite transformation when cooled to the superconducting state. Nb3Sn is one of those compounds that transforms, at least partially, from a cubic to tetragonal structure near 43 K. To our knowledge this transformation in Nb3Sn has not been studied by TEM. In fact, the only low temperature TEM study of an A15 material, V3Si, was performed by Goringe and Valdre over 20 years ago. They found the martensite structure in some foil areas at temperatures between 11 and 29 K, accompanied by faults that consisted of coherent twin boundaries on {110} planes. In pursuing our studies of irradiation defects in superconductors, we are the first to observe by TEM a similar martensite structure in Nb3Sn.Samples of Nb3Sn suitable for TEM studies have been produced by both a liquid solute diffusion reaction and by sputter deposition of thin films.


Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


Sign in / Sign up

Export Citation Format

Share Document