scholarly journals Pregnancy alters the in vitro responsiveness of the rabbit medial collateral ligament to neuropeptides: effect on mRNA levels for growth factors, cytokines, iNOS, COX-2, metalloproteinases and TIMPs

Author(s):  
David A. Hart ◽  
Carol Reno
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Renrong Wei ◽  
Cuiping Rong ◽  
Qingfeng Xie ◽  
Shouhai Wu ◽  
Yuchao Feng ◽  
...  

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.


2019 ◽  
Vol 47 (12) ◽  
pp. 2827-2835
Author(s):  
Ranita H.K. Manocha ◽  
James A. Johnson ◽  
Graham J.W. King

Background: Medial collateral ligament (MCL) injuries are common after elbow trauma and in overhead throwing athletes. A hinged elbow orthosis (HEO) is often used to protect the elbow from valgus stress early after injury and during early return to play. However, there is minimal evidence regarding the efficacy of these orthoses in controlling instability and their influence on long-term clinical outcomes. Purpose: (1) To quantify the effect of an HEO on elbow stability after simulated MCL injury. (2) To determine whether arm position, forearm rotation, and muscle activation influence the effectiveness of an HEO. Study Design: Controlled laboratory study. Methods: Seven cadaveric upper extremity specimens were tested in a custom simulator that enabled elbow motion via computer-controlled actuators and motors attached to relevant tendons. Specimens were examined in 2 arm positions (dependent, valgus) and 2 forearm positions (pronation, supination) during passive and simulated active elbow flexion while unbraced and then while braced with an HEO. Testing was performed in intact elbows and repeated after simulated MCL injury. An electromagnetic tracking device measured valgus angulation as an indicator of elbow stability. Results: When the arm was dependent, the HEO increased valgus angle with the forearm in pronation (+1.0°± 0.2°, P = .003) and supination (+1.5°± 0.0°, P = .006) during active motion. It had no significant effect on elbow stability during passive motion. In the valgus position, the HEO had no effect on elbow stability during passive or active motion in pronation and supination. With the arm in the valgus position with the HEO, muscle activation reduced instability during pronation (–10.3°± 2.5°, P = .006) but not supination ( P = .61). Conclusion: In this in vitro study, this HEO did not enhance mechanical stability when the arm was in the valgus and dependent positions after MCL injury. Clinical Relevance: After MCL injury, an HEO likely does not provide mechanical elbow stability during rehabilitative exercises or when the elbow is subjected to valgus stress such as occurs during throwing.


Zygote ◽  
2010 ◽  
Vol 19 (1) ◽  
pp. 71-83 ◽  
Author(s):  
Isana M. A. Frota ◽  
Cintia C. F. Leitão ◽  
José J. N. Costa ◽  
Ivina R. Brito ◽  
Robert van den Hurk ◽  
...  

SummaryThe aim of the present study was to investigate the stability of six housekeeping genes, and the relative expression of growth factors (EGF, GDF-9, BMP-15, VEGF, FGF-2, BMP-6, IGF-1 and KL) and hormone receptors (FSH, LH and GH) in goat preantral follicles. To evaluate to stability of housekeeping genes micro-dissected fresh follicles (150–200 μm) as well as follicles that have been in vitro cultured for 12 days were used. In addition, isolated fresh follicles were used to compare expression of various growth factors and hormone receptors before culture. Both fresh and cultured follicles were subjected to total RNA extraction and synthesis of cDNA. After amplification of cDNA by real-time PCR, the geNorm software program was used to evaluate the stability of glyceraldehyde-2-phosphate dehydrogenase (GAPDH), β-tubulin, β-actin, phosphoglycerokinase (PGK), 18S rRNA, ubiquitin (UBQ) and ribosomal protein 19 (RPL-19). In addition, follicular steady-state levels of mRNA from the various growth factors under study were compared. Results demonstrated that, in goat preantral follicles, UBQ and β-actin were the most suitable reference genes and thus could be used as parameters to normalize data from future in vitro studies. In contrast, 18S RNA appeared the least stable gene among the tested housekeeping genes. Analysis of mRNA for several hypophyseal hormone receptors in fresh preantral follicles showed significantly higher FSH-R mRNA levels than those of LH-R and GH-R, and no difference between GH-R and LH-R mRNA levels. In regard growth factor mRNA expression in goat preantral follicles, EGF mRNA levels appeared significantly lower than those of the other studied growth factors. Increasingly higher relative mRNA levels were observed for GDF-9, BMP-15, BMP-6, FGF-2, VEGF, Kl and IGF-1, successively. In conclusion, UBQ and β-actin are the most stable housekeeping genes in fresh and 12-days cultured caprine preantral follicles. Furthermore, in fresh follicles, high levels of FSH-R mRNA are detected while among eight growth factors, IGF-1 is the most highly expressed and EGF the weakest expressed compound.


2005 ◽  
Vol 93 (04) ◽  
pp. 743-750 ◽  
Author(s):  
Sarah Horn ◽  
Siegfried Lang ◽  
Kenji Fukudome ◽  
Adriane Nahrup ◽  
Ursula Hoffmann ◽  
...  

SummaryProstacyclin (PGI2) has beneficial cytoprotective properties, is a potent inhibitor of platelet aggregation and has been reported to improve microcirculatory blood flow during sepsis. The formation of PGI2 in response to proinflammatory cytokines is catalysed by the inducible cyclooxygenase (COX) isoform COX-2. Recombinant human activated protein C (rhAPC, drotrecogin alfa (activated)) was shown to have multiple biological activities in vitro and to promote resolution of organ dysfunction in septic patients. Whether rhAPC exerts its beneficial effects by modulating prostanoid generation is unknown up to now. It was therefore the aim of the study to examine the in vitro effect of rhAPC on COX-2-mRNA-expression and PGI2 release from human umbilical vein endothelial cells (HUVEC). We found that rhAPC, at supra-therapeutical concentrations (500ng/ml-20μg/ ml), upregulated the amount of COX-2-mRNA in HUVEC at t=3–9h and caused a time- and dose-dependent release of 6-keto PGF1α, the stable hydrolysis product of prostacyclin. RhAPC further increased the stimulating effect of tumor necrosis factor-α (TNF-α) and thrombin on COX-2-mRNA-levels. Transcript levels of cyclooxygenase-1 (COX-1) and prostagland-in I2 synthase, however, were unaffected by the stimulation with rhAPC or thrombin. The upregulatory effect on COX2-mRNA levels was specific for rhAPC since the zymogen protein C in equimolar concentrations had no effect on COX-2-mRNA-levels or 6keto PGF1α-release. Western Blot analysis revealed an increase of COX-2-protein content in HUVEC after treatment with rhAPC. As shown by experiments using monoclonal antibodies against the thrombin receptor PAR-1 (mAb=ATAP2) and against the endothelial protein C receptor (EPCR; mAb=RCR-252), the effect of rhAPC on COX-2-mRNA up-regulation was mediated by binding to the EPCR-receptor and signaling via PAR-1. These results demonstrate that induction of COX-2-expression is an important response of HUVEC to stimulation with rhAPC and may represent a new molecular mechanism, by which rhAPC promotes upregulation of prostanoid production in human endothelium.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2032
Author(s):  
Vishnu Raj ◽  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Sanjana Chandran ◽  
Shreesh K. Ojha ◽  
...  

Nerolidol (NED) is a naturally occurring sesquiterpene alcohol present in various plants with potent anti-inflammatory effects. In the current study, we investigated NED as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were administered 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis. Six groups received either vehicle alone or DSS alone or DSS with oral NED (50, 100, and 150 mg/kg body weight/day by oral gavage) or DSS with sulfasalazine. Disease activity index (DAI), colonic histology, and biochemical parameters were measured. TNF-α-treated HT-29 cells were used as in vitro model of colonic inflammation to study NED (25 µM and 50 µM). NED significantly decreased the DAI and reduced the inflammation-associated changes in colon length as well as macroscopic and microscopic architecture of the colon. Changes in tissue Myeloperoxidase (MPO) concentrations, neutrophil and macrophage mRNA expression (CXCL2 and CCL2), and proinflammatory cytokine content (IL-1β, IL-6, and TNF-α) both at the protein and mRNA level were significantly reduced by NED. The increase in content of the proinflammatory enzymes, COX-2 and iNOS induced by DSS were also significantly inhibited by NED along with tissue nitrate levels. NED promoted Nrf2 nuclear translocation dose dependently. NED significantly increased antioxidant enzymes activity (Superoxide dismutase (SOD) and Catalase (CAT)), Hemeoxygenase-1 (HO-1), and SOD3 mRNA levels. NED treatment in TNF-α-challenged HT-29 cells significantly decreased proinflammatory chemokines (CXCL1, IL-8, CCL2) and COX-2 mRNA levels. NED supplementation attenuates colon inflammation through its potent antioxidant and anti-inflammatory activity both in in vivo and in vitro models of colonic inflammation.


Reproduction ◽  
2007 ◽  
Vol 133 (5) ◽  
pp. 1005-1016 ◽  
Author(s):  
M Zerani ◽  
C Dall’Aglio ◽  
M Maranesi ◽  
A Gobbetti ◽  
G Brecchia ◽  
...  

The objective of the present study was to investigate in rabbit corpora lutea (CL), at both the cellular and molecular level, intraluteal cyclooxygenase (COX)-1, COX-2 and prostaglandin (PG) E2-9-ketoreductase (PGE2-9-K) enzymatic activities as well asin vitroPGE2 and PGF2α synthesis following PGF2α treatment at either early- (day-4) or mid-luteal (day-9) stage of pseudopregnancy. By immunohistochemistry, positive staining for COX-2 was localized in luteal and endothelial cells of stromal arteries at both the stages. In CL of both stages, basal COX-2 mRNA levels were poorly expressed, but rose (P< 0.01) 4- to 10-fold 1.5–6 h after treatment and then gradually decreased within 24 h. Compared to mid-stage, day-4 CL had lower (P< 0.01) COX-2 and PGE2-9-K basal activities, and PGF2α synthesis rate, but higher (P< 0.01) PGE2 production. Independent of luteal stage, PGF2α treatment did not affect COX-1 activity. In day-4 CL, PGF2α induced an increase (P< 0.01) in both COX-2 activity and PGF2α synthesis, whereas that of PGE2 remained unchanged. In day-9 CL, PGF2α up-regulated (P< 0.01) both COX-2 and PGE-9-K activities, and PGF2α production, but decreased (P< 0.01) PGE2 synthesis. All changes in gene expression and enzymatic activities occurred within 1.5 h after PGF2α challenge and were more marked in day-9 CL. Our data suggest that PGF2α directs intraluteal PG biosynthesis in mature CL, by affecting the CL biosynthetic machinery to increase the PGF2α synthesis in an auto-amplifying manner, with the activation of COX-2 and PGE-9-K; this may partly explain their differentially, age-dependent, luteolytic capacity to exogenous PGF2α in rabbits.


2020 ◽  
Vol 35 (12) ◽  
pp. 2793-2807
Author(s):  
P Asiabi ◽  
M M Dolmans ◽  
J Ambroise ◽  
A Camboni ◽  
C A Amorim

Abstract STUDY QUESTION Can human theca cells (TCs) be differentiated in vitro? SUMMARY ANSWER It is possible to differentiate human TCs in vitro using a medium supplemented with growth factors and hormones. WHAT IS KNOWN ALREADY There are very few studies on the origin of TCs in mammalian ovaries. Precursor TCs have been described in neonatal mice ovaries, which can differentiate into TCs under the influence of factors from oocytes and granulosa cells (GCs). On the other hand, studies in large animal models have reported that stromal cells (SCs) isolated from the cortical ovarian layer can also differentiate into TCs. STUDY DESIGN, SIZE, DURATION After obtaining informed consent, ovarian biopsies were taken from eight menopausal women (53–74 years of age) undergoing laparoscopic surgery for gynecologic disease not related to the ovaries. SCs were isolated from the ovarian cortex and in vitro cultured for 8 days in basic medium (BM) (G1), enriched with growth factors, FSH and LH in plastic (G2) or collagen substrate without (G3) or with (G4) a GC line. PARTICIPANTS/MATERIALS, SETTING, METHODS To confirm TC differentiation, relative mRNA levels for LH receptor (Lhr), steroidogenic acute regulatory protein (Star), cholesterol side-chain cleavage enzyme (Cyp11a1), cytochrome P450 17A1 (Cyp17a1), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (Hsd3b1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 (Hsd3b2) were assessed. Immunohistochemistry was also performed for their protein detection and a specific marker was identified for TCs (aminopeptidase-N, CD13), as were markers for theca and small luteal cells (dipeptidyl peptidase IV (CD26) and Notch homolog 1, translocation-associated (NOTCH1)). Finally, we analyzed cell ultrastructure before (Day 0) and after in vitro culture (Day 8), and dehydroepiandrosterone (DHEA) and progesterone levels in the medium using transmission electron microscopy (TEM) and ELISA, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Results obtained from qPCR showed a significant increase (P &lt; 0.05) in mRNA levels of Lhr in F2 (floating cells in G2) and G4, Cyp17a1 in G1 and F1 (floating cells in G1) and Hsd3b2 in G1, G2, G3 and G4. Immunohistochemistry confirmed expression of each enzyme involved in the steroidogenic pathway at the protein stage. However, apart from G1, all other groups exhibited a significant (P &lt; 0.05) rise in the number of CD13-positive cells. There was also a significant increase (P &lt; 0.05) in NOTCH1-positive cells in G3 and G4. Ultrastructure analyses by TEM showed a distinct difference between groups and also versus Day 0. A linear trend with time revealed a significant gain (q &lt; 0.001) in DHEA concentrations in the medium during the culture period in G1, G2, G3 and G4. It also demonstrated a statistical increase (q &lt; 0.001) in G2, G3 and G4 groups, but G1 remained the same throughout culture in terms of progesterone levels. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Shorter periods of in vitro culture (e.g. 2, 4 and 6 days) could have led to increased concentrations of differentiated TCs in G2, G3 and G4. In addition, a group of cells cultured in BM and accompanied by COV434 cells would be necessary to understand their role in the differentiation process. Finally, while our results demonstrate that TCs can be differentiated in vitro from cells isolated from the cortical layer of postmenopausal ovaries, we do not know if these cells are differentiated from a subpopulation of precursor TCs present in ovarian cortex or ovarian SCs in general. It is therefore necessary to identify specific markers for precursor TCs in human ovaries to understand the origin of these cells. WIDER IMPLICATIONS OF THE FINDINGS This is a promising step toward understanding TC ontogenesis in the human ovary. Moreover, in vitro-generated human TCs can be used for studies on drug screening, as well as to understand TC-associated pathologies, such as androgen-secreting tumors and polycystic ovary syndrome. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) (C.A.A. is an FRS-FNRS Research Associate; grant MIS #F4535 16 awarded to C.A.A.; grant 5/4/150/5 awarded to M.M.D.; grant ASP-RE314 awarded to P.A.) and Foundation Against Cancer (grant 2018-042 awarded to A.C.). The authors declare no competing interests.


2007 ◽  
Vol 293 (6) ◽  
pp. F1805-F1810 ◽  
Author(s):  
Yuqiang Ge ◽  
Kevin A. Strait ◽  
Peter K. Stricklett ◽  
Tianxin Yang ◽  
Donald E. Kohan

Collecting duct (CD)-derived endothelin-1 (ET-1) exerts natriuretic, diuretic, and hypotensive effects. In vitro studies have implicated cyclooxygenase (COX) metabolites, and particularly PGE2, as important mediators of CD ET-1 effects. However, it is unknown whether PGE2 mediates CD-derived ET-1 actions in vivo. To test this, CD ET-1 knockout (KO) and control mice were studied. During normal salt and water intake, urinary PGE2 excretion was unexpectedly increased in CD ET-1 KO mice compared with controls. Salt loading markedly increased urinary PGE2 excretion in both groups of mice; however, the levels remained relatively higher in KO animals. Acutely isolated inner medullary collecting duct (IMCD) from KO mice also had increased PGE2 production. The increased IMCD PGE2 was COX-2 dependent, since NS-398 blocked all PGE2 production. However, increased CD ET-1 KO COX-2 protein or mRNA could not be detected in inner medulla or IMCD, respectively. Inner medullary COX-1 mRNA and protein levels and IMCD COX-1 mRNA levels were unaffected by Na intake or CD ET-1 KO. KO mice on a normal or high-Na diet had elevated blood pressure compared with controls; this difference was not altered by indomethacin or NS-398 treatment. However, indomethacin or NS-398 did increase urine osmolality and reduce urine volume in KO, but not control, animals. In summary, IMCD COX-2-dependent PGE2 production is increased in CD ET-1 KO mice, indicating that CD-derived ET-1 is not a primary regulator of IMCD PGE2. Furthermore, the increased PGE2 in CD ET-1 KO mice partly compensates for loss of ET-1 with respect to maintaining urinary water excretion, but not in blood pressure control.


2004 ◽  
Vol 45 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Ian K. Y. Lo ◽  
Linda L. Marchuk ◽  
Kate E. Leatherbarrow ◽  
Cyril B. Frank ◽  
David A. Hart

Sign in / Sign up

Export Citation Format

Share Document