Metastable crystalline phases formed in the Fe–Ta system by solid-state reaction

1999 ◽  
Vol 288 (1-2) ◽  
pp. 159-163 ◽  
Author(s):  
C Lin ◽  
G.W Yang ◽  
J.B Liu ◽  
B.X Liu
2007 ◽  
Vol 336-338 ◽  
pp. 133-135 ◽  
Author(s):  
Wang Sheng Fang ◽  
Pi Yi Du ◽  
Wen Jian Weng ◽  
Gao Rong Han

Srm-3Bi4TimO3m+3 (m =3, 4, 5, and 6) bulk ceramics were prepared by conventional solid-state reaction process. Their phase structures and morphologies were observed by XRD and SEM respectively. The dielectric properties and hysteresis loops of the ceramics were measured by impedance analyzer and hysteresis meter respectively. Results showed that the lattice parameters along the c axis are 32.79, 41.11, 48.83, and 58.17Ǻ for m=3, 4, 5, and 6 respectively. The microstructures of plate-like crystalline phases are shown in all the ceramics with different m. Curie temperature of Srm-3Bi4TimO3m+3 decreases from 668°C to 295°C with increasing m from 3 to 6. The remnant polarizations Pr are 32.46 and 19.44 μC/cm2 for odd m of 3 and 5, and 11.84 and 10.58 μC/cm2 for even m of 4 and 6 respectively.


1995 ◽  
Vol 398 ◽  
Author(s):  
F. Pan ◽  
Z.F. Ling ◽  
K.Y. Gao ◽  
B.X. Liu

ABSTRACTIn an immiscible Cu-Nb system, an amorphous alloy and two metastable crystalline phases were obtained by solid-state reaction of Cu-Nb multilayered films, and the formation of the alloy phases was found to be quite sensitive to the average composition of the films. At Nb concentration of 75at%, amorphization was achieved by 250°C annealing for 50 min, while in the films with compositions of 70 and 80 at% Nb, a simple cubic (a=0.405±0.005nm) and an orthorhombic phase (a=0.421, b=0.334, c=0.291±0.005nm) were observed, respectively. Thermodynamic calculation was conducted for the Nb-Cu alloy phases and the energetic state of the multilayers, which consisted of 9 Cu/Nb bilayers. It turned out that the excess free energy originating from the interfacial atoms could raise the multilayers to an energy level being higher than that of the amorphous or/and metastable crystalline phases both with a convex shape, and thus provided a major driving force for alloy phase formation in such immiscible system.


1999 ◽  
Vol 14 (7) ◽  
pp. 3027-3036 ◽  
Author(s):  
G. W. Yang ◽  
C. Lin ◽  
B. X. Liu

Solid-state amorphization was achieved in the Ni48Nb52 multilayers upon thermal annealing by gradually raising the temperature from 250 to 400 °C and staying at 400 °C for 2 h. More interestingly, before complete amorphization, a sequential disordering of first Ni and then Nb crystalline lattices was observed for the first time, and it was essentially the physical origin of an asymmetric growth of the amorphous interlayer during solid-state reaction reported previously in some binary metal systems. In another two multilayered samples with overall compositions of Ni64Nb36 and Ni70Nb30, thermal annealing under similar conditions resulted in the formation of two metastable crystalline phases with face-centered-cubic and hexagonal-close-packed structures, respectively, although an amorphous phase also appeared and coexisted with one of the metastable crystalline phases in the intermediate states. In the ion mixing experiment, such sequential disordering, as well as formation of metastable phases, was also observed in the respective Ni–Nb multilayers upon room-temperature 200-keV xenon ion irradiation. Comparatively, however, ion irradiation eventually induced complete amorphization in all the multilayers at the respective doses, indicating that ion-induced disordering frequently predominated in the competition between amorphization and the growth of a metastable crystalline phase. A Gibbs free energy diagram, including the free energy curves of the newly formed metastable crystalline phases, of the Ni–Nb system was calculated based on Miedema's model. The constructed free energy diagram can give reasonable explanations of the sequential disordering and the thermodynamic possibility of the formation of either an amorphous or a metastable crystalline phase, of which the free energy difference was quite small. It follows naturally that the phase selection, namely, which phase was more favored to be formed eventually than its competitors, was influenced or even determined by the kinetics involved in the respective processes.


1995 ◽  
Vol 269 (1-2) ◽  
pp. 102-107 ◽  
Author(s):  
Jae-Yeob Shim ◽  
Joon-Seop Kwak ◽  
Eung-Jun Chi ◽  
Hong-Koo Baik ◽  
Sung-Man Lee

Author(s):  
S.R. Summerfelt ◽  
C.B. Carter

The wustite-spinel interface can be viewed as a model interface because the wustite and spinel can share a common f.c.c. oxygen sublattice such that only the cations distribution changes on crossing the interface. In this study, the interface has been formed by a solid state reaction involving either external or internal oxidation. In systems with very small lattice misfit, very large particles (>lμm) with coherent interfaces have been observed. Previously, the wustite-spinel interface had been observed to facet on {111} planes for MgFe2C4 and along {100} planes for MgAl2C4 and MgCr2O4, the spinel then grows preferentially in the <001> direction. Reasons for these experimental observations have been discussed by Henriksen and Kingery by considering the strain energy. The point-defect chemistry of such solid state reactions has been examined by Schmalzried. Although MgO has been the principal matrix material examined, others such as NiO have also been studied.


Author(s):  
J. R. Heffelfinger ◽  
C. B. Carter

Transmission-electron microscopy (TEM), scanning-electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to investigate the solid-state reaction between a thin yttria film and a (0001) α-alumina substrate. Systems containing Y2O3 (yttria) and Al2O3 (alumina) are seen in many technologically relevant applications. For example, yttria is being explored as a coating material for alumina fibers for metal-ceramic composites. The coating serves as a diffusion barrier and protects the alumina fiber from reacting with the metal matrix. With sufficient time and temperature, yttria in contact with alumina will react to form one or a combination of phases shown by the phase diagram in Figure l. Of the reaction phases, yttrium aluminum garnet (YAG) is used as a material for lasers and other optical applications. In a different application, YAG is formed as a secondary phase in the sintering of AIN. Yttria is added to AIN as a sintering aid and acts as an oxygen getter by reacting with the alumina in AIN to form YAG.


1990 ◽  
Vol 51 (C4) ◽  
pp. C4-111-C4-117 ◽  
Author(s):  
L. J. GALLEGO ◽  
J. A. SOMOZA ◽  
H. M. FERNANDEZ ◽  
J. A. ALONSO

2013 ◽  
Vol 12 (10) ◽  
pp. 719-726
Author(s):  
R. Ayadi ◽  
Mohamed Boujelbene ◽  
T. Mhiri

The present paper is interested in the study of compounds from the apatite family with the general formula Ca10 (PO4)6A2. It particularly brings to light the exploitation of the distinctive stereochemistries of two Ca positions in apatite. In fact, Gd-Bearing oxyapatiteCa8 Gd2 (PO4)6O2 has been synthesized by solid state reaction and characterized by X-ray powder diffraction. The site occupancies of substituents is0.3333 in Gd and 0.3333 for Ca in the Ca(1) position and 0. 5 for Gd in the Ca (2) position.  Besides, the observed frequencies in the Raman and infrared spectra were explained and discussed on the basis of unit-cell group analyses.


Sign in / Sign up

Export Citation Format

Share Document