A comparative study of methyl-tert-butyl ether synthesis on zeolites HY, HBeta, HBeta/F and HZSM-5 by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography

2000 ◽  
Vol 193 (1-2) ◽  
pp. 227-236 ◽  
Author(s):  
Thomas Horvath ◽  
Michael Seiler ◽  
Michael Hunger
2001 ◽  
Vol 203 (2) ◽  
pp. 375-381 ◽  
Author(s):  
Irina I Ivanova ◽  
Elena B Pomakhina ◽  
Alexander I Rebrov ◽  
Michael Hunger ◽  
Yuryi G Kolyagin ◽  
...  

Minerals ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 34 ◽  
Author(s):  
Elisa Rodeghero ◽  
Luisa Pasti ◽  
Elena Sarti ◽  
Giuseppe Cruciani ◽  
Roberto Bagatin ◽  
...  

2002 ◽  
Vol 2 ◽  
pp. 1235-1242 ◽  
Author(s):  
J. Fraile ◽  
J.M. Niaerola ◽  
L. Olivella ◽  
M. Figueras ◽  
A. Ginebreda ◽  
...  

Headspace (HS) gas chromatography with flame ionisation detection (HS-GC-FID) and purge and trap (P) gas chromatography-mass spectrometry (P) were used for the determination of methyl-tert-butyl ether (MTBE) and benzene, toluene, and xylenes (BTEX) in groundwater. In this work, we present the first data on the levels of MTBE and BTEX in different groundwater wells in the area of Catalonia (northeast Spain). This monitoring campaign corresponded to 28 groundwater wells that were located near petrol service stations, oil refinery storage tanks, and/or chemical industry at different locations of Catalonia during the period of 1998/1999. The levels of MTBE detected varied between 4—300 μg/l, but two sites had MTBE levels up to 3 and 13 mg/l. In many cases, the BTEX levels were below 1 μg/l, whereas 7 sites had levels varying from 19 μg/l up to 3 mg/l. Most of them were related to leakage from underground tanks in petrol service stations, while the remaining three corresponded respectively to chemical industrial pollution of undetermined origin and to a leak from high-ground petrol tanks in petrochemical refinery factories. The aquifers involved were constituted by detritus coarse materials, sands, and conglomerates. Piezometric levels were roughly comprised between 3 and 40 m, and permeability (K) and transmissivity (T) values were estimated from field measurements.The MTBE/BTEX ratio was also calculated and reached values up to 250. These values were expected, since if we consider that spilled oxygenated gasoline is the source of well contamination and based on solubility considerations alone, the MTBE source concentrations would be about 200 times higher than any BTEX compounds.


2005 ◽  
Vol 52 (8) ◽  
pp. 117-123 ◽  
Author(s):  
B.P.J. de Lacy Costello ◽  
P.S. Sivanand ◽  
N.M. Ratcliffe ◽  
D.M. Reynolds

The gasoline additive Methyl-tertiary-Butyl Ether (MtBE) is the second most common contaminant of groundwater in the USA and represents an important soil contaminant. This compound has been detected in the groundwater in at least 27 states as a result of leaking underground storage facilities (gasoline storage tanks and pipelines). Since the health effects of MtBE are unclear the potential threat to drinking water supplies is serious. Therefore, the ability to detect MtBE at low levels (ppb) and on-line at high-risk groundwater sites would be highly desirable. This paper reports the use of ‘commercial’ and metal oxide sensor arrays for the detection of MtBE in drinking and surface waters at low ppb level (μg.L−1 range). The output responses from some of the sensors were found to correlate well with MtBE concentrations under laboratory conditions.


Holzforschung ◽  
2014 ◽  
Vol 68 (2) ◽  
pp. 151-155 ◽  
Author(s):  
Daniel J. van de Pas ◽  
Bernadette Nanayakkara ◽  
Ian D. Suckling ◽  
Kirk M. Torr

Abstract Mild hydrogenolysis has been compared with thioacidolysis as a method for degrading lignins in situ and in isolated form before analysis by gas chromatography/mass spectrometry and quantitative 31P nuclear magnetic resonance (NMR) spectroscopy. Both degradation methods gave similar levels of β-aryl ether-linked phenylpropane units that were released as monomers. Degradation by hydrogenolysis generally gave lower levels of total phenylpropane units when analyzed by 31P NMR, especially in the case of lignins with high levels of condensed units. Overall, these results indicate that mild hydrogenolysis could offer an alternative to thioacidolysis for probing lignin structure.


Sign in / Sign up

Export Citation Format

Share Document