A combined finite element and finite difference scheme for computer simulation of microstructure evolution and its application to pore–boundary separation during sintering

2000 ◽  
Vol 18 (1) ◽  
pp. 76-92 ◽  
Author(s):  
S. Kucherenko ◽  
J. Pan ◽  
J.A. Yeomans
2006 ◽  
Vol 6 (2) ◽  
pp. 154-177 ◽  
Author(s):  
E. Emmrich ◽  
R.D. Grigorieff

AbstractIn this paper, we study the convergence of the finite difference discretization of a second order elliptic equation with variable coefficients subject to general boundary conditions. We prove that the scheme exhibits the phenomenon of supraconvergence on nonuniform grids, i.e., although the truncation error is in general of the first order alone, one has second order convergence. All error estimates are strictly local. Another result of the paper is a close relationship between finite difference scheme and linear finite element methods combined with a special kind of quadrature. As a consequence, the results of the paper can be viewed as the introduction of a fully discrete finite element method for which the gradient is superclose. A numerical example is given.


2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


Sign in / Sign up

Export Citation Format

Share Document