A Hybrid Finite-Element/Finite-Difference Scheme for Solving the 3-D Energy Equation in Transient Nonisothermal Fluid Flow over a Staggered Tube Bank

2015 ◽  
Vol 68 (2) ◽  
pp. 169-183 ◽  
Author(s):  
Seyyed Mahmood Aboulhasan Alavi ◽  
Mohammad Reza Safaei ◽  
Omid Mahian ◽  
Marjan Goodarzi ◽  
Hooman Yarmand ◽  
...  
2006 ◽  
Vol 6 (2) ◽  
pp. 154-177 ◽  
Author(s):  
E. Emmrich ◽  
R.D. Grigorieff

AbstractIn this paper, we study the convergence of the finite difference discretization of a second order elliptic equation with variable coefficients subject to general boundary conditions. We prove that the scheme exhibits the phenomenon of supraconvergence on nonuniform grids, i.e., although the truncation error is in general of the first order alone, one has second order convergence. All error estimates are strictly local. Another result of the paper is a close relationship between finite difference scheme and linear finite element methods combined with a special kind of quadrature. As a consequence, the results of the paper can be viewed as the introduction of a fully discrete finite element method for which the gradient is superclose. A numerical example is given.


2019 ◽  
Vol 105 (6) ◽  
pp. 1127-1136
Author(s):  
M. Sadri ◽  
K. Hejranfar ◽  
M. Ebrahimi

The objective of this work is to numerically study the fluid flow and acoustic field of a supersonic impinging jet by applying the vorticity confinement (VC) method. For this aim, the three-dimensional compressible Navier-Stokes equations with the incorporation of the VC method are considered and the resulting system of equations is solved by using the sixth-order compact finite-difference scheme. To eliminate the numerical instability, a low-pass high-order filter is used. The nonreflective boundary conditions are applied for all the free boundaries and the radiated sound field is obtained by the Kirchhoff surface integration. Comparisons of the present results with the experimental data and other numerical simulations show that the solution methodology adopted based on the application of the VC method with the high-order compact finite-difference scheme provides a good prediction of the fluid flow and the acoustic field of the impingement region on coarser grids than that usually required in the LESs, and thus, the calculations of coarse grid LESs are improved.


Sign in / Sign up

Export Citation Format

Share Document