scholarly journals A two-dimensional computational methodology for high-speed dislocations in high strain-rate deformation

2001 ◽  
Vol 20 (1) ◽  
pp. 1-18 ◽  
Author(s):  
A. Roos ◽  
J.Th.M. De Hosson ◽  
E. Van der Giessen
2007 ◽  
Vol 340-341 ◽  
pp. 283-288 ◽  
Author(s):  
Jung Han Song ◽  
Hoon Huh

The dynamic response of the turbine blade materials is indispensable for analysis of erosions of turbine blades as a result of impulsive loading associated with gas flow. This paper is concerned with the dynamic material properties of the Inconel 718 alloy which is widely used in the high speed turbine blade. The dynamic response at the corresponding level of the strain rate should be acquired with an adequate experimental technique and apparatus due to the inertia effect and the stress wave propagation. In this paper, the dynamic response of the Inconel 718 at the intermediate strain rate ranged from 1/s to 400/s is obtained from the high speed tensile test and that at the high strain rate above 1000/s is obtained from the split Hopkinson pressure bar test. The effects of the strain rate on the dynamic flow stress, the strain rate sensitivity and the failure elongation are evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 3000/s are interpolated in order to construct the constitutive relation that should be applied to simulate the dynamic behavior of the turbine blade made of the Inconel 718.


1998 ◽  
Vol 83 (9) ◽  
pp. 4660-4671 ◽  
Author(s):  
C. J. Shih ◽  
V. F. Nesterenko ◽  
M. A. Meyers

2011 ◽  
Vol 88-89 ◽  
pp. 674-678
Author(s):  
Shuang Zan Zhao ◽  
Xing Wang Cheng ◽  
Fu Chi Wang

Some results of an experimental study on high strain rate deformation of TC21 alloy are discussed in this paper. Cylindrical specimens of the TC21 alloys both in binary morphology and solution and aging morphology were subjected to high strain rate deformation by direct impact using a Split Hopkinson Pressure Bar. The deformation process is dominated by both thermal softening effect and strain hardening effect under high strain rate loading. Thus the flow stress doesn’t increase with strain rate at the strain hardening stage, while the increase is obvious under qusi-static compression. Under high strain rate, the dynamic flow stress is higher than that under quasi-static and dynamic flow stress increase with the increase of the strain rate, which indicates the strain rate hardening effect is great in TC21 alloy. The microstructure affects the dynamic mechanical properties of TC21 titanium alloy obviously. Under high strain rate, the solution and aging morphology has higher dynamic flow stress while the binary morphology has better plasticity and less prone to be instability under high strain rate condition. Shear bands were found both in the solution and aging morphology and the binary morphology.


Sign in / Sign up

Export Citation Format

Share Document