THE DIFFERENCE BETWEEN THE CLASSIC METHOD AND STEWARD METHOD TO EVALUATE THE ARTERIAL BLOOD GAS

2011 ◽  
Vol 22 ◽  
pp. S7
Author(s):  
Orhan Demir ◽  
Fatih Bulucu ◽  
Kadir Ozturk ◽  
Mustafa Gezer ◽  
Mehmet Apikoglu
2019 ◽  
pp. 203-206
Author(s):  
Mevlut Demir ◽  
◽  
Muslum Sahin ◽  
Ahmet Korkmaz ◽  
◽  
...  

Carbon monoxide intoxication occurs usually via inhalation of carbon monoxide that is emitted as a result of a fire, furnace, space heater, generator, motor vehicle. A 37-year-old male patient was admitted to the emergency department at about 5:00 a.m., with complaints of nausea, vomiting and headache. He was accompanied by his wife and children. His venous blood gas measures were: pH was 7.29, partial pressure of carbon dioxide (pCO2) was 42 mmHg, partial pressure of oxygen (pO2) was 28 mmHg, carboxyhemoglobin (COHb) was 12.7% (reference interval: 0.5%-2.5%) and oxygen saturation was 52.4%. Electrocardiogram (ECG) examination showed that the patient was not in sinus rhythm but had atrial fibrillation. After three hours the laboratory examination was repeated: Troponin was 1.2 pg/ml and in the arterial blood gas COHb was 3%. The examination of the findings on the monitor showed that the sinus rhythm was re-established. The repeated ECG examination confirmed the conversion to the sinus rhythm. He was monitored with the normobaric oxygen administration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Gaston ◽  
Santhosh M. Baby ◽  
Walter J. May ◽  
Alex P. Young ◽  
Alan Grossfield ◽  
...  

AbstractWe have identified thiolesters that reverse the negative effects of opioids on breathing without compromising antinociception. Here we report the effects of d-cystine diethyl ester (d-cystine diEE) or d-cystine dimethyl ester (d-cystine diME) on morphine-induced changes in ventilation, arterial-blood gas chemistry, A-a gradient (index of gas-exchange in the lungs) and antinociception in freely moving rats. Injection of morphine (10 mg/kg, IV) elicited negative effects on breathing (e.g., depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive). Subsequent injection of d-cystine diEE (500 μmol/kg, IV) elicited an immediate and sustained reversal of these effects of morphine. Injection of morphine (10 mg/kg, IV) also elicited pronounced decreases in arterial blood pH, pO2 and sO2 accompanied by pronounced increases in pCO2 (all indicative of a decrease in ventilatory drive) and A-a gradient (mismatch in ventilation-perfusion in the lungs). These effects of morphine were reversed in an immediate and sustained fashion by d-cystine diME (500 μmol/kg, IV). Finally, the duration of morphine (5 and 10 mg/kg, IV) antinociception was augmented by d-cystine diEE. d-cystine diEE and d-cystine diME may be clinically useful agents that can effectively reverse the negative effects of morphine on breathing and gas-exchange in the lungs while promoting antinociception. Our study suggests that the d-cystine thiolesters are able to differentially modulate the intracellular signaling cascades that mediate morphine-induced ventilatory depression as opposed to those that mediate morphine-induced antinociception and sedation.


2021 ◽  
Vol 11 (3) ◽  
pp. 517-521
Author(s):  
Alejandro Montero-Salinas ◽  
Marta Pérez-Ramos ◽  
Fernando Toba-Alonso ◽  
Leticia Quintana-DelRío ◽  
Jorge Suanzes-Hernández ◽  
...  

Aim. To evaluate the influence of time on arterial blood gas values after artery puncture is performed. Method. Prospective longitudinal observational study carried out with gasometric samples from 86 patients, taken at different time intervals (0 (T0), 15 (T15), 30 (T30) and 60 (T60) min), from 21 October 2019 to 21 October 2020. The study variables were: partial pressure of carbon dioxide, bicarbonate, hematocrit, hemoglobin, potassium, lactic acid, pH, partial pressure of oxygen, saturation of oxygen, sodium and glucose. Results. The initial sample consisted of a total of 90 patients. Out of all the participants, four were discarded as they did not understand the purpose of the study; therefore, the total number of participants was 86, 51% of whom were men aged 72.59 on average (SD: 16.23). In the intra-group analysis, differences in PCO2, HCO3, hematocrit, Hb, K+ and and lactic acid were observed between the initial time of the test and the 15, 30 and 60 min intervals. In addition, changes in pH, pO2, SO2, Na and glucose were noted 30 min after the initial sample had been taken. Conclusions. The variation in the values, despite being significant, has no clinical relevance. Consequently, the recommendation continues to be the analysis of the GSA at the earliest point to ensure the highest reliability of the data and to provide the patient with the most appropriate treatment based on those results.


Author(s):  
Kirsty L. Ress ◽  
Gus Koerbin ◽  
Ling Li ◽  
Douglas Chesher ◽  
Phillip Bwititi ◽  
...  

AbstractObjectivesVenous blood gas (VBG) analysis is becoming a popular alternative to arterial blood gas (ABG) analysis due to reduced risk of complications at phlebotomy and ease of draw. In lack of published data, this study aimed to establish reference intervals (RI) for correct interpretation of VBG results.MethodsOne hundred and 51 adult volunteers (101 females, 50 males 18–70 y), were enrolled after completion of a health questionnaire. Venous blood was drawn into safePICO syringes and analysed on ABL827 blood gas analyser (Radiometer Pacific Pty. Ltd.). A non-parametric approach was used to directly establish the VBG RI which was compared to a calculated VBG RI based on a meta-analysis of differences between ABG and VBGResultsAfter exclusions, 134 results were used to derive VBG RI: pH 7.30–7.43, partial pressure of carbon dioxide (pCO2) 38–58 mmHg, partial pressure of oxygen (pO2) 19–65 mmHg, bicarbonate (HCO3−) 22–30 mmol/L, sodium 135–143 mmol/L, potassium 3.6–4.5 mmol/L, chloride 101–110 mmol/L, ionised calcium 1.14–1.29 mmol/L, lactate 0.4–2.2 mmol/L, base excess (BE) −1.9–4.5 mmol/L, saturated oxygen (sO2) 23–93%, carboxyhaemoglobin 0.4–1.4% and methaemoglobin 0.3–0.9%. The meta-analysis revealed differences between ABG and VBG for pH, HCO3−, pCO2 and pO2 of 0.032, −1.0 mmol/L, −4.2 and 39.9 mmHg, respectively. Using this data along with established ABG RI, calculated VBG RI of pH 7.32–7.42, HCO3− 23 – 27 mmol/L, pCO2 36–49 mmHg (Female), pCO2 39–52 mmHg (Male) and pO2 43–68 mmHg were formulated and compared to the VBG RI of this study.ConclusionsAn adult reference interval has been established to assist interpretation of VBG results.


BMJ ◽  
2013 ◽  
Vol 346 (jan16 1) ◽  
pp. f16-f16 ◽  
Author(s):  
N. J. Cowley ◽  
A. Owen ◽  
J. F. Bion

CHEST Journal ◽  
1973 ◽  
Vol 63 (5) ◽  
pp. 793-800 ◽  
Author(s):  
Edward E. Mays ◽  
Lt Col

CHEST Journal ◽  
1983 ◽  
Vol 84 (1) ◽  
pp. 14-18 ◽  
Author(s):  
Stuart H. Thorson ◽  
John J. Marini ◽  
David J. Pierson ◽  
Leonard D. Hudson

Sign in / Sign up

Export Citation Format

Share Document