Design alternatives for the use of cooling water in the process industry: Minimization of the environmental impact from cooling systems

1996 ◽  
Vol 4 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Jan W. Bloemkolk ◽  
Robert J. van der Schaaf
2002 ◽  
Vol 2 ◽  
pp. 41-57 ◽  
Author(s):  
John A. Veil ◽  
Markus G. Puder ◽  
Debra J. Littleton ◽  
Nancy Johnson

Section 316(b) of the Clean Water Act (CWA) requires that “the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.” As the U.S. Environmental Protection Agency (EPA) develops new regulations to implement Section 316(b), much of the debate has centered on adverse impingement and entrainment impacts of cooling-water intake structures. Depending on the specific location and intake layout, once-through cooling systems withdrawing many millions of gallons of water per day can, to a varying degree, harm fish and other aquatic organisms in the water bodies from which the cooling water is withdrawn. Therefore, opponents of once-through cooling systems have encouraged the EPA to require wet or dry cooling tower systems as the best technology available (BTA), without considering site-specific conditions.However, within the context of the broader scope of the CWA mandate, this focus seems too narrow. Therefore, this article examines the phrase “minimizing adverse environmental impact” in a holistic light. Emphasis is placed on the analysis of the terms “environmental” and “minimizing.” Congress chose “environmental” in lieu of other more narrowly focused terms like “impingement and entrainment,” “water quality,” or “aquatic life.” In this light, BTA for cooling-water intake structures must minimize the entire suite of environmental impacts, as opposed to just those associated with impingement and entrainment. Wet and dry cooling tower systems work well to minimize entrainment and impingement, but they introduce other equally important impacts because they impose an energy penalty on the power output of the generating unit. The energy penalty results from a reduction in plant operating efficiency and an increase in internal power consumption. As a consequence of the energy penalty, power companies must generate additional electricity to achieve the same net output. This added production leads to additional environmental impacts associated with extraction and processing of the fuel, air emissions from burning the fuel, and additional evaporation of freshwater supplies during the cooling process. Wet towers also require the use of toxic biocides that are subsequently discharged or disposed. The other term under consideration, “minimizing,” does not equal “eliminating.” Technologies may be available to minimize but not totally eliminate adverse environmental impacts.


2020 ◽  
pp. 75-86
Author(s):  
Sergio Antonio Camargo ◽  
Lauro Correa Romeiro ◽  
Carlos Alberto Mendes Moraes

The present article aimed to test changes in cooling water temperatures of males, present in aluminum injection molds, to reduce failures due to thermal fatigue. In order to carry out this work, cooling systems were studied, including their geometries, thermal gradients and the expected theoretical durability in relation to fatigue failure. The cooling system tests were developed with the aid of simulations in the ANSYS software and with fatigue calculations, using the method of Goodman. The study of the cooling system included its geometries, flow and temperature of this fluid. The results pointed to a significant increase in fatigue life of the mold component for the thermal conditions that were proposed, with a significant increase in the number of cycles, to happen failures due to thermal fatigue.


Author(s):  
Alan J. Bilanin ◽  
Andrew E. Kaufman ◽  
Warren J. Bilanin

Boiling Water Reactor pressure suppression pools have stringent housekeeping requirements, as well as restrictions on amounts and types of insulation and debris that can be present in the containment, to guarantee that suction strainers that allow cooling water to be supplied to the reactor during a Loss of Coolant Accident remain operational. By introducing “good debris” into the cooling water, many of these requirements/restrictions can be relaxed without sacrificing operational readiness of the cooling system.


2019 ◽  
Vol 9 (2) ◽  
pp. 229 ◽  
Author(s):  
Jongchan Yi ◽  
Yongtae Ahn ◽  
Moongi Hong ◽  
Gi-Hyeon Kim ◽  
Nisha Shabnam ◽  
...  

To prevent biofouling from occurring in the cooling systems of coastal power plants, chlorine is often added to the cooling water. In this study, we have evaluated the fate of the total residual oxidants and the formation of inorganic chlorination byproducts including ClO3− and ClO4− during in situ electrochlorination with seawater. Then, the results were compared with those during direct OCl−-injection to seawater. The in situ electrochlorination method based on Ti/RuO2 electrodes produced much less ClO3−, while a similar level of total residual oxidants could be achieved with a reaction time of 5 min. Moreover, no ClO4− was observed, while the direct OCl−-injection system could still result in the production of ClO4−. The less or no production of ClO3− or ClO4− by the electrochlorination of seawater was mainly attributed to two reasons. First, during the electrolysis, the less amount of OCl− is available for ClO3− formation. Secondly, the formation of ClO3− or ClO4− is affected by the electrode material. In other words, if the electrode material is carefully chosen, the production of harmful reaction byproducts can be prevented or minimized. In short, based on the results from our study, electrochlorination technology proves to be a marine environmentally friendly method for controlling biofouling in the pipes of the cooling system in a coastal power plant.


2002 ◽  
Vol 2 ◽  
pp. 1273-1280 ◽  
Author(s):  
Greg Seegert

Section 316(b) of the Clean Water Act requires that cooling-water intake structures (CWIS) use Best Technology Available (BTA) to minimize adverse environmental impacts (AEI). The U.S. EPA has not defined AEI, and there is no clear consensus regarding its definition. Nonetheless, operational definitions are necessary to evaluate design alternatives and to measure the success of mitigative measures. Rather than having to develop measures of aquatic health that are highly site-specific, controversial, and often unlikely to elicit agreement from all sides of the environmental “fence”, it may be more productive to use existing ecological assessment tools. Aquatic Life Uses (ALU) already provide a regulatory framework to assess the quality (health) of the aquatic community in various habitats (e.g., warmwater habitat, exceptional warmwater habitat). Attainment of the ALU indicates that further point source controls are unnecessary, whereas nonattainment indicates that those pollutants or stressors causing the nonattainment must be reduced. A similar approach for existing water intakes is recommended. That is, attainment of the designated ALU will be taken as an indication that there is no AEI. Although attainment of the ALU may not be a foolproof indicator of a lack of AEI, this approach seems more reasonable that using scarce monetary resources to fix problems that likely do not exist, or having both regulators and the regulated community expend their resources debating whether various observed biological responses do or do not constitute AEI.


Author(s):  
Jaron J. Peck ◽  
Amanda D. Smith

Climate change can have a large effect on thermoelectric power generation. Typical thermoelectric power plants rely on water to cool steam in the condenser in order to produce electricity. Increasing global temperatures can increase average water temperatures as well as decrease the amount of water available for cooling due to evaporation. It is important to know how these parameters can affect power generation and efficiency of power systems, especially when assessing the water needs of a plant for a desired power output and whether a site can fulfill those needs. This paper explains the development of a model that shows how power and efficiency are affected due to changing water temperature and water availability for plants operating on a Rankine cycle. Both a general model of the simple Rankine cycle as well as modifications for regeneration and feedwater heating are presented. Power plants are analyzed for two different types of cooling systems: once-through cooling and closed circuit cooling with a cooling tower. Generally, rising temperatures in cooling water have been found to lower power generation and efficiency. Here, we present a method for quantifying power output and efficiency reductions due to changes in cooling water flow rates or water temperatures. Using specified plant parameters, such as boiler temperature and pressure, power and efficiency are modeled over a 5°C temperature range of inlet cooling water. It was found that over this temperature range, power decrease ranged from 2–3.5% for once through cooling systems, depending on the power system, and 0.7% for plants with closed circuit cooling. This shows that once-through systems are more vulnerable to changing temperatures than cooling tower systems. The model is also applied to Carbon Plant, a coal fired power plant in Utah that withdraws water from the Price River, to show how power and efficiency change as the temperature of the water changes using USGS data obtained for the Price River. The model can be applied to other thermoelectric power stations, whether actual or proposed, to investigate the effects of water conditions on projected power output and plant efficiency.


1979 ◽  
Vol 101 (2) ◽  
pp. 162-171 ◽  
Author(s):  
D. R. Gunewardana ◽  
M. Tomizuka ◽  
D. M. Auslander

This paper deals with the application of dynamic control to cooling systems of power plants. The operation of heat dispersal systems with control can result in a saving of power and cooling water. The performance of all cooling systems depends, mainly, upon the ambient conditions and the heat load to be dissipated. Hence, a control scheme that makes use of information obtained by previewing the weather and load conditions, i.e., preview control, is ideally suited for this problem. An iterative procedure is presented for determining the optimal preview control policy for a dynamical system whose dynamics vary depending upon the mode of operation that the controller selects. The algorithm is applied to two types of cooling systems: one consisting of a spray pond and a natural draft wet cooling tower, and the other consisting of a spray pond and a dry cooling tower. The preview control scheme is shown to be a substantial improvement over the uncontrolled case.


1982 ◽  
Vol 88 (3) ◽  
pp. 369-381 ◽  
Author(s):  
J. B. Kurtz ◽  
C. L. R. Bartlett ◽  
U. A. Newton ◽  
R. A. White ◽  
N. L. Jones

SummaryFourteen recirculating cooling water systems were surveyed during the summer, 1981, to see what factors might influence the prevalence ofLegionella pneumophila. The effect on the organism of three anti-microbials was studied, each in two systems, by intermittent treatment at two week intervals.L. pneumophilawas isolated from six of the 14 cooling systems at the beginning of the trial but by the end was present in ten. An association was found between the presence of the organism and the concentration of dissolved solids, and chlorides and the pH. There also appeared to be associations with exclusion of light and higher water temperatures.Repeated tests on eight untreated systems showed that two were consistently infected, three became and remained infected, one was infected on a single occasion and two were never infected withL. pneumophila. Treatment of a contaminated system, either with a 10 p.p.m mixture of a quaternary ammonium compound and tributyltinoxide or slow release chlorine briquettes (maximum recorded free chlorine level 1·2 p.p.m.), did not eliminated legionellae. Treatment of two infected towers with a chlorinated phenol (100 p.p.m.) eliminated legionellae for at least three days, but after 14 days the organism was again found.


2002 ◽  
Vol 2 ◽  
pp. 30-40
Author(s):  
John R. Young ◽  
William P. Dey

Initially, regulation of cooling water intakes under §316(b) was extremely conservative due to the rapid increase predicted for generating capacity, and to the uncertainty associated with our knowledge of the effects of entrainment and impingement. The uncertainty arose from four main sources: estimation of direct plant effects; understanding of population regulatory processes; measurement of population parameters; and predictability of future conditions. Over the last quarter-century, the uncertainty from the first three sources has been substan-tially reduced, and analytical techniques exist to deal with the fourth. In addition, the dire predictions initially made for some water bodies have not been realized, demonstrating that populations can successfully withstand power plant impacts. This reduced uncertainty has resulted in less conservative regulation in some, but not all venues. New York appears to be taking a more conservative approach to cooling water intakes. The conservative approach is not based on regulations, but in a philosophy that power plant mortality is an illegitimate use of the aquatic resources. This philosophy may simplify permitting decisions, but it does not further the development of a science-based definition of adverse environmental impact.


Sign in / Sign up

Export Citation Format

Share Document