541: Protein complex composition distinguishes different cancer types

2014 ◽  
Vol 50 ◽  
pp. S131 ◽  
Author(s):  
A. Ori ◽  
S. Singer ◽  
M. Beck
2021 ◽  
Author(s):  
Youngwoo Lee ◽  
Thomas W Okita ◽  
Daniel B Szymanski

Multiprotein complexes execute and coordinate diverse cellular processes such as organelle biogenesis, vesicle trafficking, cell signaling, and metabolism. Knowledge about their composition and localization provides useful clues about the mechanisms of cellular homeostasis and systems-level control. This is of great biological importance and practical significance in heterotrophic rice endosperm and aleurone-subaleurone tissues that are a primary source of seed vitamins and stored energy. Dozens of protein complexes have been implicated in the synthesis, transport, and storage of seed proteins, lipids, vitamins, and minerals. Mutations in protein complexes that control RNA transport result in aberrant endosperm with shrunken and floury phenotypes, significantly reducing seed yield and quality. The purpose of this research is to broadly predict protein complex composition in the aleurone-subaleurone layers of developing rice seeds using co-fractionation mass spectrometry. Following orthogonal chromatographic separations of biological replicates, thousands of protein elution profiles were subjected to distance-based clustering to enable a large-scale determination of multimerization state and complex composition. Predictions included evolutionarily conserved proteins across diverse functional categories, including novel heteromeric RNA binding protein complexes that influence seed quality. This effective and open-ended proteomics pipeline provides useful clues about systems-level controls in the early stage of rice seed development.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jonathan D. Lautz ◽  
Edward P. Gniffke ◽  
Emily A. Brown ◽  
Karen B. Immendorf ◽  
Ryan D. Mendel ◽  
...  

2019 ◽  
Vol 18 (8) ◽  
pp. 1588-1606 ◽  
Author(s):  
Zachary McBride ◽  
Donglai Chen ◽  
Youngwoo Lee ◽  
Uma K. Aryal ◽  
Jun Xie ◽  
...  

Author(s):  
Y. Feng ◽  
X. Lei ◽  
L. Zhang ◽  
H. Wan ◽  
H. Pan ◽  
...  

AbstractThe Coatomer protein complex subunit beta 2 (COPB2) is involved in the formation of the COPI coatomer protein complex and is responsible for the transport of vesicles between the Golgi apparatus and the endoplasmic reticulum. It plays an important role in maintaining the integrity of these cellular organelles, as well as in maintaining cell homeostasis. More importantly, COPB2 plays key roles in embryonic development and tumor progression. COPB2 is regarded as a vital oncogene in several cancer types and has been implicated in tumor cell proliferation, survival, invasion, and metastasis. Here, we summarize the current knowledge on the roles of COPB2 in cancer development and progression in the context of the hallmarks of cancer.


Sign in / Sign up

Export Citation Format

Share Document