scholarly journals The Development of Highly Loaded Turbine Rotating Blades by Using 3D Optimization Design Method of Turbomachinery Blades Based on Artificial Neural Network & Genetic Algorithm

2003 ◽  
Vol 16 (4) ◽  
pp. 198-202 ◽  
Author(s):  
Fan-zhen ZHOU ◽  
Guo-tai FENG ◽  
Hong-de JIANG
2011 ◽  
Vol 138-139 ◽  
pp. 534-539
Author(s):  
Li Hai Chen ◽  
Qing Zhen Yang ◽  
Jin Hui Cui

Genetic algorithm (GA) is improved with fast non-dominated sort approach and crowded comparison operator. A new algorithm called parallel multi-objective genetic algorithm (PMGA) is developed with the support of Massage Passing Interface (MPI). Then, PMGA is combined with Artificial Neural Network (ANN) to improve the optimization efficiency. Training samples of the ANN are evaluated based on the two-dimensional Navier-Stokes equation solver of cascade. To demonstrate the feasibility of the hybrid algorithm, an optimization of a controllable diffusion cascade is performed. The optimization results show that the present method is efficient and trustiness.


2014 ◽  
Vol 493 ◽  
pp. 123-128 ◽  
Author(s):  
Ismoyo Haryanto ◽  
Tony Suryo Utomo ◽  
Nazaruddin Sinaga ◽  
Citra Asti Rosalia ◽  
Aditya Pratama Putra

.This paper deals with an alternative design method of airfoil for wind turbine blade for low wind speed based on combination of smart computing and numerical optimization. In this work, a simulation of Artificial Neural Network (ANN) for determining the relation between airfoil geometry and its aerodynamic characteristics was conducted. First, several airfoil geometries were generated through transformation of complex variables (Joukowski transformation), and then lift and drag coefficients of each airfoil were determined using CFD (Computational Fluid Dynamics). In present study, the ANN training was conducted using airfoil geometry and its aerodynamic characteristics as input and output, respectively. Therefore, lift and drag coefficients can be directly determined only by giving the airfoil geometry without having to perform wind tunnel experiment or numerical computation. Moreover, the optimization was conducted to obtain an airfoil geometry which gives maximum lift to drag ratio (CL/CD) for specific Reynolds number. For this purpose Genetic Algorithm (GA) was applied as optimizer. The results were validated using commercial CFD and it can be shown that the result are satisfactory with error approximately of 6%.


2020 ◽  
Vol 37 (6) ◽  
pp. 429-436
Author(s):  
Kyu-Seok Jung ◽  
Sung-Min Cho ◽  
Jae-Hyeong Yu ◽  
Yo-Han Yoo ◽  
Jong-Bong Kim ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohammad Mehdi Arab ◽  
Abbas Yadollahi ◽  
Maliheh Eftekhari ◽  
Hamed Ahmadi ◽  
Mohammad Akbari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document