Size distribution and chemical composition of secondary organic aerosol formed from Cl-initiated oxidation of toluene

2012 ◽  
Vol 24 (5) ◽  
pp. 860-864 ◽  
Author(s):  
Mingqiang Huang ◽  
Weijun Zhang ◽  
Xuejun Gu ◽  
Changjin Hu ◽  
Weixiong Zhao ◽  
...  
2009 ◽  
Vol 21 (11) ◽  
pp. 1525-1531 ◽  
Author(s):  
Xianyun LIU ◽  
Weijun ZHANG ◽  
Zhenya WANG ◽  
Weixiong ZHAO ◽  
Ling TAO ◽  
...  

2006 ◽  
Vol 110 (31) ◽  
pp. 9665-9690 ◽  
Author(s):  
Jason D. Surratt ◽  
Shane M. Murphy ◽  
Jesse H. Kroll ◽  
Nga L. Ng ◽  
Lea Hildebrandt ◽  
...  

2016 ◽  
Author(s):  
L. Li ◽  
P. Tang ◽  
S. Nakao ◽  
D. R. Cocker III

Abstract. The molecular structure of volatile organic compounds (VOC) determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of twelve different eight to nine carbon aromatic hydrocarbons under low NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution theory developed by Li et al. (2015a) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl substituted aromatic hydrocarbon.


2021 ◽  
Vol 21 (15) ◽  
pp. 11545-11562
Author(s):  
Louise N. Jensen ◽  
Manjula R. Canagaratna ◽  
Kasper Kristensen ◽  
Lauriane L. J. Quéléver ◽  
Bernadette Rosati ◽  
...  

Abstract. This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentrations on the chemical composition of particles formed in the dark ozonolysis of α-pinene. All experiments were conducted in a 5 m3 Teflon chamber at an initial ozone concentration of 100 ppb and initial α-pinene concentrations of 10 and 50 ppb, respectively; at constant temperatures of 20, 0, or −15 ∘C; and at changing temperatures (ramps) from −15 to 20 and from 20 to −15 ∘C. The chemical composition of the particles was probed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A four-factor solution of a positive matrix factorization (PMF) analysis of the combined HR-ToF-AMS data is presented. The PMF analysis and the elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial α-pinene concentration (10 ppb) and at the highest temperature (20 ∘C). A higher initial α-pinene concentration (50 ppb) and/or lower temperature (0 or −15 ∘C) results in a lower oxidation level of the molecules contained in the particles. With respect to the carbon oxidation state, particles formed at 0 ∘C are more comparable to particles formed at −15 ∘C than to those formed at 20 ∘C. A remarkable observation is that changes in temperature during particle formation result in only minor changes in the elemental composition of the particles. Thus, the temperature at which aerosol particle formation is induced seems to be a critical parameter for the particle elemental composition. Comparison of the HR-ToF-AMS-derived estimates of the content of organic acids in the particles based on m/z 44 in the mass spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. Higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), while the organic acid functionalities account for an increasing fraction of the measured particle mass.


2016 ◽  
Vol 50 (10) ◽  
pp. 4997-5006 ◽  
Author(s):  
Rebecca M. Harvey ◽  
Adam P. Bateman ◽  
Shashank Jain ◽  
Yong Jie Li ◽  
Scot Martin ◽  
...  

2019 ◽  
Vol 19 (5) ◽  
pp. 2787-2812 ◽  
Author(s):  
Betty Croft ◽  
Randall V. Martin ◽  
W. Richard Leaitch ◽  
Julia Burkart ◽  
Rachel Y.-W. Chang ◽  
...  

Abstract. Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arctic Archipelago during the summer of 2016, as part of the “NETwork on Climate and Aerosols: Addressing key uncertainties in Remote Canadian Environments” (NETCARE) project. Our simulations suggest that condensation of secondary organic aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic marine (ice-free seawater) regions plays a key role in particle growth events that shape the aerosol size distributions observed at Alert (82.5∘ N, 62.3∘ W), Eureka (80.1∘ N, 86.4∘ W), and along a NETCARE ship track within the Archipelago. We refer to this SOA as Arctic marine SOA (AMSOA) to reflect the Arctic marine-based and likely biogenic sources for the precursors of the condensing organic vapors. AMSOA from a simulated flux (500 µgm-2day-1, north of 50∘ N) of precursor vapors (with an assumed yield of unity) reduces the summertime particle size distribution model–observation mean fractional error 2- to 4-fold, relative to a simulation without this AMSOA. Particle growth due to the condensable organic vapor flux contributes strongly (30 %–50 %) to the simulated summertime-mean number of particles with diameters larger than 20 nm in the study region. This growth couples with ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and biogenic sulfate condensation to account for more than 90 % of this simulated particle number, which represents a strong biogenic influence. The simulated fit to summertime size-distribution observations is further improved at Eureka and for the ship track by scaling up the nucleation rate by a factor of 100 to account for other particle precursors such as gas-phase iodine and/or amines and/or fragmenting primary particles that could be missing from our simulations. Additionally, the fits to the observed size distributions and total aerosol number concentrations for particles larger than 4 nm improve with the assumption that the AMSOA contains semi-volatile species: the model–observation mean fractional error is reduced 2- to 3-fold for the Alert and ship track size distributions. AMSOA accounts for about half of the simulated particle surface area and volume distributions in the summertime Canadian Arctic Archipelago, with climate-relevant simulated summertime pan-Arctic-mean top-of-the-atmosphere aerosol direct (−0.04 W m−2) and cloud-albedo indirect (−0.4 W m−2) radiative effects, which due to uncertainties are viewed as an order of magnitude estimate. Future work should focus on further understanding summertime Arctic sources of AMSOA.


2017 ◽  
Author(s):  
Julia Montoya ◽  
Jeremy R. Horne ◽  
Mallory L. Hinks ◽  
Lauren T. Fleming ◽  
Veronique Perraud ◽  
...  

Abstract. Indole is a heterocyclic compound emitted by various plant species under stressed conditions or during flowering events. The formation, optical properties, and chemical composition of secondary organic aerosol (SOA) formed by low-NOx photooxidation of indole were investigated. The SOA yield (1.1 ± 0.3) was estimated from measuring the particle mass concentration with a scanning mobility particle sizer (SMPS) and correcting it for the wall loss effects. The SOA particles were collected on filters and analysed offline with UV-Vis spectrophotometry to measure the mass absorption coefficient (MAC) of the bulk sample. The samples were visibly brown and had MAC values of ~7 m2/g at λ = 300 nm and ~2 m2/g at λ = 400 nm, comparable to strongly absorbing brown carbon emitted from biomass burning. The chemical composition of SOA was examined with several mass spectrometry methods. The direct analysis in real time mass spectrometry (DART-MS) and nanospray desorption electrospray high resolution mass spectrometry (nano-DESI-HRMS) were used to provide information about the overall distribution of SOA compounds. High performance liquid chromatography, coupled to photodiode array spectrophotometry and high resolution mass spectrometry (HPLC-PDA-HRMS) was used to identify chromophoric compounds. Indole derivatives, such as tryptanthrin, indirubin, indigo dye, and indoxyl red were found to contribute significantly to the visible absorption spectrum of indole SOA. The potential effect of indole SOA on air quality was explored with the airshed model, which found elevated concentrations of indole SOA during the afternoon hours contributing considerably to the total organic aerosol under selected scenarios. Because of its high MAC values, indole SOA can contribute to decreased visibility and poor air quality.


2015 ◽  
Vol 15 (6) ◽  
pp. 3063-3075 ◽  
Author(s):  
A. T. Lambe ◽  
P. S. Chhabra ◽  
T. B. Onasch ◽  
W. H. Brune ◽  
J. F. Hunter ◽  
...  

Abstract. We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm−3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm−3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm−3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.


2014 ◽  
Vol 14 (10) ◽  
pp. 5153-5181 ◽  
Author(s):  
R. A. Zaveri ◽  
R. C. Easter ◽  
J. E. Shilling ◽  
J. H. Seinfeld

Abstract. This paper describes and evaluates a new framework for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The framework uses a combination of (a) an analytical quasi-steady-state treatment for the diffusion–reaction process within the particle phase for fast-reacting organic solutes, and (b) a two-film theory approach for slow- and nonreacting solutes. The framework is amenable for use in regional and global atmospheric models, although it currently awaits specification of the various gas- and particle-phase chemistries and the related physicochemical properties that are important for SOA formation. Here, the new framework is implemented in the computationally efficient Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) to investigate the competitive growth dynamics of the Aitken and accumulation mode particles. Results show that the timescale of SOA partitioning and the associated size distribution dynamics depend on the complex interplay between organic solute volatility, particle-phase bulk diffusivity, and particle-phase reactivity (as exemplified by a pseudo-first-order reaction rate constant), each of which can vary over several orders of magnitude. In general, the timescale of SOA partitioning increases with increase in volatility and decrease in bulk diffusivity and rate constant. At the same time, the shape of the aerosol size distribution displays appreciable narrowing with decrease in volatility and bulk diffusivity and increase in rate constant. A proper representation of these physicochemical processes and parameters is needed in the next generation models to reliably predict not only the total SOA mass, but also its composition- and number-diameter distributions, all of which together determine the overall optical and cloud-nucleating properties.


Sign in / Sign up

Export Citation Format

Share Document