bulk diffusivity
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 2)

2020 ◽  
Vol 50 (9) ◽  
pp. 2797-2814
Author(s):  
Shuwen Tan ◽  
Larry J. Pratt ◽  
Dongliang Yuan ◽  
Xiang Li ◽  
Zheng Wang ◽  
...  

AbstractHydrographic measurements recently acquired along the thalweg of the Lifamatola Passage combined with historical moored velocity measurements immediately downstream of the sill are used to study the hydraulics, transport, mixing, and entrainment in the dense overflow. The observations suggest that the mean overflow is nearly critical at the mooring site, suggesting that a weir formula may be appropriate for estimating the overflow transport. Our assessment suggests that the weir formulas corresponding to a rectangular, triangular, or parabolic cross section all result in transports very close to the observation, suggesting their potential usage in long-term monitoring of the overflow transport or parameterizing the transport in numerical models. Analyses also suggest that deep signals within the overflow layer are blocked by the shear flow from propagating upstream, whereas the shallow wave modes of the full-depth continuously stratified flow are able to propagate upstream from the Banda Sea into the Maluku Sea. Strong mixing is found immediately downstream of the sill crest, with Thorpe-scale-based estimates of the mean dissipation rate within the overflow up to 1.1 × 10−7 W kg−1 and the region-averaged diapycnal diffusivity within the downstream overflow in the range of 2.3 × 10−3 to 10.1 × 10−3 m2 s−1. Mixing in the Lifamatola Passage results in 0.6–1.2-Sv (1 Sv ≡ 106 m3 s−1) entrainment transport added to the overflow, enhancing the deep-water renewal in the Banda Sea. A bulk diffusivity coefficient estimated in the deep Banda Sea yields 1.6 × 10−3 ± 5 × 10−4 m2 s−1, with an associated downward turbulent heat flux of 9 W m−2.


2019 ◽  
Vol 49 (10) ◽  
pp. 2669-2695 ◽  
Author(s):  
R. M. Holmes ◽  
Casimir de Lavergne ◽  
Trevor J. McDougall

AbstractMixing layers near sloped topography in the abyss are thought to play a critical role in the global overturning circulation. Yet the behavior of passive tracers within sloping boundary layer systems has received little attention, despite the extensive use of tracer observations to understand abyssal circulation. Here, we investigate the behavior of a passive tracer released near a sloping boundary within a flow governed by one-dimensional boundary layer theory. The spreading rate of the tracer across isopycnals is influenced by factors such as the bottom-intensification of mixing, the dipole of upwelling (in the boundary layer) and downwelling (in the outer mixing layer), and along-isopycnal diffusion. For isolated near-boundary tracer releases, the bulk diffusivity, proportional to the rate of increase of the variance of the tracer distribution in buoyancy space, is much less than what would be expected from averaging the diapycnal diffusivity over the tracer patch. This stems from the presence of the bottom boundary that prevents tracer diffusion through it. Furthermore, when along-isopycnal diffusion is weak, the boundary tends to drive the tracer up the slope toward less dense fluid on average due to asymmetries between boundary layer and interior flows. With strong along-isopycnal diffusion this upslope movement is reduced, while at the same time the average diapycnal spreading rate is increased due to a reduced influence of the bottom boundary. These results have implications for what can be learned about the characteristics of mixing near sloping boundaries from past and future tracer-release experiments.


2018 ◽  
Vol 614 ◽  
pp. A107 ◽  
Author(s):  
P. Ghesquière ◽  
A. Ivlev ◽  
J. A. Noble ◽  
P. Theulé

Context. The synthesis of interstellar complex organic molecules in ice involves several types of reactions between molecules and/or radicals that are usually considered to be diffusion controlled. Aims. We aim to understand the coupling between diffusion and reactivity in the interstellar ice mantle using a model binary reaction in the diffusion-limited regime. Methods. We performed isothermal kinetic laboratory experiments on interstellar ice analogs at low temperatures, using the NH3:CO2:H2O model system where reactants NH3 and CO2 have a low reaction barrier and are diluted in a water-dominated ice. Results. We found that in the diffusion-limited regime, the reaction kinetics is not determined by the intrinsic bulk diffusivity of reactants. Instead, reactions are driven by structural changes evolving in amorphous water ice, such as pore collapse and crystallization. Diffusion of reactants in this case likely occurs along the surface of (tiny) cracks generated by the structural changes. Conclusions. The reactivity driven by the structural changes breaks the conventional picture of reactant molecules/radicals diffusing in a bulk water ice. This phenomenon is expected to lead to a dramatic increase in production rates of interstellar complex organic molecules in star-forming regions.


2016 ◽  
Vol 8 ◽  
pp. 80-108
Author(s):  
P. Fielitz ◽  
Günter Borchardt

Aluminium is a key element in geological and man-made materials which has only one stable isotope and no radionuclides with half-life times suitable for standard experimental diffusion studies. Here we report on our method using the radioisotope 26Al (t1/2 = 7.4×105 a) as a quasi-stable tracer for aluminium in combination with SIMS depth profiling. First, our data for the aluminium bulk diffusivity in a-alumina are discussed jointly with published oxygen bulk diffusion coefficients. They clearly show that the relation DAl>>D0 is valid in the temperature range 1200 °C ≤ T ≤ 1800 °C. In an analogous manner, the two rare stable isotopes 18O and 30Si are used together with 26Al in diffusion studies of generic examples of materials which either consist of aluminium, silicon and oxygen only, or where these three elements are key constituents of the structure. For the crystalline aluminium silicate mullite our diffusivity data for aluminium, oxygen and silicon are used to explain the kinetics of the solid state formation reaction of mullite and the segregation kinetics of alumina from mullite. Finally, the diffusivities of oxygen and aluminium in model aluminosilicate glasses are presented as a function of temperature for different Al3+/Na+ ratios. For the aluminium silicate mullite and for the aluminosilicate glasses the relation D0>DAl>DSi is valid regardless of the exact composition. For the glass system the activation enthalpies of aluminium and oxygen diffusion decrease with decreasing Al3+/Na+ ratio.


2015 ◽  
Vol 61 (227) ◽  
pp. 503-510 ◽  
Author(s):  
Alexandra L. Giese ◽  
Robert L. Hawley

AbstractWe have constrained the value for thermal diffusivity of near-surface snow and firn at Summit Station, Greenland, using a Fourier-type analysis applied to hourly temperature measurements collected from eight thermistors in a closed-off, air-filled borehole between May 2004 and July 2008. An implicit, finite-difference method suggests that a bulk diffusivity of ∼25 ± 3m2 a−1 is the most reasonable for representing macroscale heat transport in the top 30 m of firn and snow. This value represents an average diffusivity and, in a conduction-only model, generates temperature series whose phase shifts with depth most closely match those of the Summit borehole data (rms difference between measurements and model output is ∼6 days). This bulk value, derived numerically and corroborated analytically, is useful over large tracts of the Greenland ice sheet where density and microstructure are unknown.


2014 ◽  
Vol 14 (10) ◽  
pp. 5153-5181 ◽  
Author(s):  
R. A. Zaveri ◽  
R. C. Easter ◽  
J. E. Shilling ◽  
J. H. Seinfeld

Abstract. This paper describes and evaluates a new framework for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The framework uses a combination of (a) an analytical quasi-steady-state treatment for the diffusion–reaction process within the particle phase for fast-reacting organic solutes, and (b) a two-film theory approach for slow- and nonreacting solutes. The framework is amenable for use in regional and global atmospheric models, although it currently awaits specification of the various gas- and particle-phase chemistries and the related physicochemical properties that are important for SOA formation. Here, the new framework is implemented in the computationally efficient Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) to investigate the competitive growth dynamics of the Aitken and accumulation mode particles. Results show that the timescale of SOA partitioning and the associated size distribution dynamics depend on the complex interplay between organic solute volatility, particle-phase bulk diffusivity, and particle-phase reactivity (as exemplified by a pseudo-first-order reaction rate constant), each of which can vary over several orders of magnitude. In general, the timescale of SOA partitioning increases with increase in volatility and decrease in bulk diffusivity and rate constant. At the same time, the shape of the aerosol size distribution displays appreciable narrowing with decrease in volatility and bulk diffusivity and increase in rate constant. A proper representation of these physicochemical processes and parameters is needed in the next generation models to reliably predict not only the total SOA mass, but also its composition- and number-diameter distributions, all of which together determine the overall optical and cloud-nucleating properties.


2013 ◽  
Vol 13 (11) ◽  
pp. 28631-28694 ◽  
Author(s):  
R. A. Zaveri ◽  
R. C. Easter ◽  
J. E. Shilling ◽  
J. H. Seinfeld

Abstract. This paper describes and evaluates a new formulation for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The new formulation uses a combination of: (a) an analytical quasi-steady-state treatment for the diffusion-reaction process within the particle phase for fast-reacting organic solutes, and (b) a two-film theory approach for slow- and non-reacting solutes. The formulation is amenable for use in regional and global atmospheric models, although it currently awaits specification of the actual species and particle-phase reactions that are important for SOA formation. Here, the formulation is applied within the framework of the computationally efficient Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) to investigate the competitive growth dynamics of the Aitken and accumulation mode particles. Results show that the timescale of SOA partitioning and the associated size distribution dynamics depend on the complex interplay between organic solute volatility, particle-phase bulk diffusivity, and particle-phase reactivity (as exemplified by a pseudo-first-order reaction rate constant), each of which can vary over several orders of magnitude. In general, the timescale of SOA partitioning increases with increase in volatility and decrease in bulk diffusivity and rate constant. At the same time, the shape of the aerosol size distribution displays appreciable narrowing with decrease in volatility and bulk diffusivity and increase in rate constant. A proper representation of these physicochemical processes and parameters are needed in the next generation models to reliably predict not only the total SOA mass, but also its composition and number size distribution, all of which together determine its overall optical and cloud-nucleating properties.


Sign in / Sign up

Export Citation Format

Share Document