scholarly journals An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics

Pedosphere ◽  
2022 ◽  
Vol 32 (1) ◽  
pp. 107-130
Author(s):  
Fasih Ullah HAIDER ◽  
Jeffrey A. COULTER ◽  
Liqun CAI ◽  
Saddam HUSSAIN ◽  
Sardar Alam CHEEMA ◽  
...  
Author(s):  
Arindam Bhattacharyya ◽  
Debaprasad Mandal ◽  
Lakshmishri Lahiry ◽  
Sankar Bhattacharyya ◽  
Sreya Chattopadhyay ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 552g-553
Author(s):  
Shahrokh Khandizadeh

Pedigree for Windows is a user-friendly program that allows the user to trace agronomic characteristics, draw pedigrees, and view images of several fruit crops, including more than 1400 apple, 800 strawberry, 800 almond, 100 blackberry, 80 blueberry, 790 pear, 200 raspberry examples. Pedigree Import Wizard®© for Windows is an add-on software for users who are interested in importing their research or breeding data records of fruit, flower, and plant characteristics and any related images into Pedigree for Windows. Pedigree for Windows and Pedigree Import Wizard have been designed so that a user familiar with the Windows operating environment should have little need to refer to the documentation provided with the program. Pedigree Import Wizard uses a comma-separated value (csv) file format under the MS Excel environment. This option allows the user to add or import additional data to the existing database that are already stored in other software such as Lotus, Excel, Access, QuattroPro, WordPerfect, and MS Word tables, etc., as long as they work under the Windows environment. A free demo version of Pedigree and Pedigree Import Wizard for Windows is available from http://www.pgris.com.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


1999 ◽  
Vol 13 (1) ◽  
pp. 12-18 ◽  
Author(s):  
José A. Noldin ◽  
James M. Chandler ◽  
Garry N. McCauley

Plant characteristics of red rice ecotypes obtained from Arkansas, Louisiana, Mississippi, and Texas, including 11 strawhulled, five blackhulled, two goldhulled, and one brownhulled type, were evaluated under field conditions. Most ecotypes were uniform and stable but manifested considerable genetic variability. Red rice plants had pubescent leaves, were taller with lighter green color, and produced more tillers and panicles per plant than rice cultivars ‘Lemont,’ ‘Mars,’ and ‘Maybelle.’ Most ecotypes were highly susceptible to seed shattering starting about 14 d after anthesis when seed moisture was more than 25%. Seeds of most ecotypes were highly dormant at harvest. Rice cultivars had a larger flag leaf and more total leaf area per plant at anthesis and produced more seeds per panicle than red rice. Some red rice ecotypes had plant characteristics closely related to cultivated rice suggesting natural hybridization with rice.


Sign in / Sign up

Export Citation Format

Share Document