Carbothermic reduction mechanism of vanadium-titanium magnetite

2016 ◽  
Vol 23 (5) ◽  
pp. 409-414 ◽  
Author(s):  
Shuang-yin Chen ◽  
Xiao-jiao Fu ◽  
Man-sheng Chu ◽  
Xi-zhe Li ◽  
Zheng-gen Liu ◽  
...  
2021 ◽  
Vol 267 ◽  
pp. 02046
Author(s):  
Bo Wang ◽  
Xueyong Ding ◽  
Xiaofei Zhang ◽  
Tianhua Ju ◽  
Shigang Li

Catalyst can enhance the reduction effect and promote the reduction of vanadium titanomagnetite. In this paper, the carbon-containing pellets of vanadium titanomagnetite were prepared by using highly volatile coal as the reducing agent under the background of a novel process of pre-reduction in the rotary kiln. The effects of CaO, CaCO3, B2O3 and borax (Na2B4O7·10H2O) on the tail gas characteristics of carbon-containing pellets in the prereduction process were studied by using a simulated rotary kiln and flue gas analyzer. The results showed that the enhanced reduction effect of boron catalysts was slightly stronger than that of calcium catalysts, among which CaO catalyzed the least and borax the best. With the increase of metallization rate, the CO utilization in the tail gas is generally reduced, while when using CaCO3 as the catalyst, the CO utilization is significantly increased. Due to different reduction mechanism, the boron catalysts have little effect on the tail gas, and the calcium catalysts have a great effect on the tail gas. Based on the experimental results and the characteristics of the tail gas from the reduction process, we put forward the idea of using CaCO3 as the best catalyst and using CaO to absorb CO2 in the tail gas to form CaCO3.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 219 ◽  
Author(s):  
Xiangdong Xing ◽  
Yueli Du ◽  
Jianlu Zheng ◽  
Yunfei Chen ◽  
Shan Ren ◽  
...  

The effects and reduction mechanisms of carbothermic reduction of vanadium–titanium–magnetite were studied by adding various mass fractions of CaF2 ranging from 0%, 1%, 3%, 5% to 7%. The results showed that the proper CaF2 addition could strengthen the carbothermic reduction of vanadium–titanium–magnetite while the excessive amounts will weaken the promotive effect, hence the appropriate dosage was determined to be 3 mass%. The CaF2 was favorable for the carbon gasification reaction, where it increased the partial pressure of CO inside briquette and caused the lattice distortion of vanadium–titanium–magnetite. The reaction improved the reduction process and accelerated the reduction rate. The appearance of 3CaO·2SiO2·CaF2 and other complex compounds with low melting point facilitated the aggregation and growth of the slag and the iron, which increased the concentration of iron grains and the aggregation level of the slag.


2018 ◽  
Vol 58 (4) ◽  
pp. 627-632 ◽  
Author(s):  
Li-Yu Shi ◽  
Yu-Lan Zhen ◽  
De-Sheng Chen ◽  
Li-Na Wang ◽  
Tao Qi

2019 ◽  
Vol 342 ◽  
pp. 214-223 ◽  
Author(s):  
Wei Zhao ◽  
Mansheng Chu ◽  
Hongtao Wang ◽  
Zhenggen Liu ◽  
Jue Tang ◽  
...  

Minerals ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 86 ◽  
Author(s):  
Gongjin Cheng ◽  
Zixian Gao ◽  
Mengyang Lv ◽  
He Yang ◽  
Xiangxin Xue

Sign in / Sign up

Export Citation Format

Share Document