scholarly journals Modelling the effect of swimbladder compression on the acoustic backscattering from herring at normal or near-normal dorsal incidences

2003 ◽  
Vol 60 (6) ◽  
pp. 1381-1391 ◽  
Author(s):  
Natalia Gorska ◽  
Egil Ona

Abstract Inaccuracy in herring target strength can be an important source of bias in the acoustic assessment of several important herring stocks. New acoustic data on herring target strength (Ona et al., 2001, submitted for publication; Ona, 2003) confirm previous suggestions and evidence on a possible reduction of the size of the herring swimbladder as a result of its compression with increasing water depth. Theoretical work for a better understanding of the acoustic scattering from herring over its entire depth distribution may therefore be essential for improving abundance estimation. This study supplements the analysis, conducted by Gorska and Ona (2003) for herring averaged-backscattering cross-section. The modal-based, deformed-cylinder model (MB-DCM) solutions, presented in that paper, are used. The sensitivity of the herring backscattering cross-section in case of normal or near-normal dorsal incidences is studied with respect to frequency, contraction factors of the swimbladder dimensions and some fish morphological parameters. The study is important for a better understanding of not only the backscattering by individual fish for the dorsal incidence, but also the depth- and frequency-dependencies of the mean-backscattering cross-section. The theoretical results have been applied in the interpretation of the actual measured target-strength data on adult herring.

2003 ◽  
Vol 60 (3) ◽  
pp. 548-554 ◽  
Author(s):  
Natalia Gorska ◽  
Egil Ona

Abstract Obtaining accurate data on fish target strength (TS) is important when determining the quality of the results from acoustic surveys. However, this requires an improved understanding of both behavioural and environmental influences on the acoustic backscattering by fish. It is well known that the increased pressure with depth compresses the swimbladder of herring, and it has been confirmed by in situ measurements that the TS of adult herring (30–34 cm) is 3–5 dB weaker at 300 m than that of fish close to the surface. Understanding exactly how swimbladder compression may influence herring TS is, therefore, of great interest, and is the main motivation behind this study. Taking account of swimbladder volume changes with depth, we obtained analytical solutions using the Modal-Based, Deformed-Cylinder Model (MB-DCM). The mean-backscattering cross-section is then computed with selected orientation patterns, length distributions, and contrast parameters. The depth-dependence of TS at different acoustic frequencies has been studied. We conducted a sensitivity analysis to show how TS is dependent on the contraction rates of the bladder dimensions and on the fish-orientation distribution. Our theoretical results are compared with TS measured at 38 kHz.


1981 ◽  
Vol 69 (4) ◽  
pp. 955-962 ◽  
Author(s):  
J. E. Ehrenberg ◽  
T. J. Carlson ◽  
J. J. Traynor ◽  
N. J. Williamson

2008 ◽  
Vol 65 (4) ◽  
pp. 594-604 ◽  
Author(s):  
Hector Peña

Abstract Peña, H. 2008. In situ target-strength measurements of Chilean jack mackerel (Trachurus symmetricus murphyi) collected with a scientific echosounder installed on a fishing vessel. – ICES Journal of Marine Science 65: 594–604. The use of commercial fishing vessels for scientific purposes has increased worldwide in the past 10 years. Many such studies have involved the collection of acoustic data from both uncalibrated and calibrated echosounders. However, few studies have involved investigations of in situ target strength (TS). During August/September 2003, in situ TS data on Chilean jack mackerel (Trachurus symmetricus murphyi) were collected on board a commercial purse-seiner during normal fishing operations off Chile, using a 38 kHz, Simrad EK60 scientific echosounder. The single-target detections of Chilean jack mackerel were filtered by depth, off-axis beam angle, and beam-compensation criteria to improve the quality of the data used for the TS calculations. Two methods, using raw data and tracked data, were employed to calculate the mean acoustic-backscattering cross section (σbs) and mean TS of Chilean jack mackerel. The results of the two approaches gave similar results, with a strong mode in the mean TS distribution between −35 and −37 dB for fish lengths ranging from 26 to 34 cm, indicating a b20 value of −66 dB. These results agreed well with most results published for this species and others of the same genus (i.e. T. trachurus, Trachurus t. capensis, and T. japonicus).


2001 ◽  
Vol 45 (02) ◽  
pp. 150-163
Author(s):  
Gregory Zilman ◽  
Touvia Miloh

Synthetic aperture radar (SAR) ship wake images in light wind and calm sea conditions frequently appear in the form of a bright V with a half-angle of 2 to 3 deg. Sophisticated and conflicting explanations of this phenomenon, based on the Bragg scattering mechanism, have been proposed. There is a belief that the narrow V-wake is not a part of the Kelvin wake. An alternative approach, which is not generally accepted, suggests that short divergent Kelvin waves may contribute to the V-wake imaging although these waves are mixed with unsteady surface waves generated by the ship-induced turbulence. Ship-generated divergent waves contaminated by surfactants and their radar backscattering cross section are studied. The hull of the ship is represented by a single layer of hydrodynamic singularities. The Green function of a point source moving below a free surface covered by surfactants is derived. A closed-form asymptotic solution for the far ship wave wake is obtained. It is used to calculate analytically the corresponding radar backscattering cross section. The radiative, viscous, and surfactant-induced decay of the V-wake brightness along the V-arms is discussed. The theoretical results are compared against available experimental data.


2021 ◽  
Vol 72 (3) ◽  
pp. 449
Author(s):  
Julie Salvetat ◽  
Anne Lebourges-Dhaussy ◽  
Paulo Travassos ◽  
Sven Gastauer ◽  
Gildas Roudaut ◽  
...  

Triggerfish are widely distributed in tropical waters where they play an important ecological role. The black triggerfish Melichthys niger may be the dominant species around oceanic tropical islands, whereas pelagic triggerfish, such as the ocean triggerfish Canthidermis sufflamen, can assemble around fish aggregating devices (FADs) where they are a common bycatch of tuna fisheries. In this study we combined acoustic and optical recordings to provide the first in situ target strength (TS) measurement of black and ocean triggerfish. Data were collected in the Archipelago of Fernando de Noronha off north-east Brazil. The mean TS of a 27.8-cm-long black triggerfish at 70 and 200kHz was –39.3dB re 1m2 (CV=14.0%) and –38.9dB re 1m2 (CV=14.4%) respectively. The mean TS values of ocean triggerfish (with a size range of 39–44cm) at 70 and 200kHz were –36.0dB re 1m2 (CV=15.7%) and –33.3dB re 1m2 (CV=14.0%) respectively. This work opens up the field for acoustic biomass estimates. In addition, we have shown that TS values for ocean triggerfish are within the same range as those of small tunas. Therefore, acoustic data transmitted from FADs equipped with echosounders can introduce a bias in tuna acoustic biomass estimation and lead to increased rates of bycatch.


2009 ◽  
Vol 67 (4) ◽  
pp. 668-676 ◽  
Author(s):  
Mathieu Doray ◽  
Stéphanie Mahévas ◽  
Verena M. Trenkel

Abstract Doray, M., Mahévas, S., and Trenkel, V. M. 2010. Estimating gear efficiency in a combined acoustic and trawl survey, with reference to the spatial distribution of demersal fish. – ICES Journal of Marine Science, 67: 668–676. Few analyses have been performed to estimate the efficiency of trawls targeting demersal fish using the ratio of catches and acoustic densities. In summer 2006, acoustic and fishing data were collected simultaneously over 3 d by three fishing vessels equipped with identical pelagic trawls in the Bay of Biscay. Variography identified moderate spatial autocorrelation in the acoustic backscatter at a mean scale of 3 km, a scale slightly smaller than the mean haul length (3.5 km), indicating that fish horizontal availability did not influence trawl efficiency. Acoustic backscattering densities expressed as nautical area scattering coefficients (NASCs) recorded in the trawled layer were compared with equivalent NASC (ENASC) values calculated from the species composition in the trawl, fish-length structure, and available relationships between target strength and fish length. Estimates of trawl efficiency for hake-dominated trawls were computed as the slopes of the relationships ENASC = 0.008 NASC and ENASC = 0.18 NASC0.31 for trawls made by day and night, respectively. For the whole demersal community, the relationships were ENASC = 0.022 NASC and ENASC = 0.17 NASC0.33 for trawls made by day and night, respectively.


2009 ◽  
Vol 66 (6) ◽  
pp. 1197-1204 ◽  
Author(s):  
Sascha M. M. Fässler ◽  
Andrew S. Brierley ◽  
Paul G. Fernandes

Abstract Fässler, S. M. M., Brierley, A. S., and Fernandes, P. G. 2009. A Bayesian approach to estimating target strength. – ICES Journal of Marine Science, 66: 1197–1204. Currently, conventional models of target strength (TS) vs. fish length, based on empirical measurements, are used to estimate fish density from integrated acoustic data. These models estimate a mean TS, averaged over variables that modulate fish TS (tilt angle, physiology, and morphology); they do not include information about the uncertainty of the mean TS, which could be propagated through to estimates of fish abundance. We use Bayesian methods, together with theoretical TS models and in situ TS data, to determine the uncertainty in TS estimates of Atlantic herring (Clupea harengus). Priors for model parameters (surface swimbladder volume, tilt angle, and s.d. of the mean TS) were used to estimate posterior parameter distributions and subsequently build a probabilistic TS model. The sensitivity of herring abundance estimates to variation in the Bayesian TS model was also evaluated. The abundance of North Sea herring from the area covered by the Scottish acoustic survey component was estimated using both the conventional TS–length formula (5.34×109 fish) and the Bayesian TS model (mean = 3.17×109 fish): this difference was probably because of the particular scattering model employed and the data used in the Bayesian model. The study demonstrates the relative importance of potential bias and precision of TS estimation and how the latter can be so much less important than the former.


2008 ◽  
Vol 65 (12) ◽  
pp. 2769-2779 ◽  
Author(s):  
Lars G. Rudstam ◽  
Frank R. Knudsen ◽  
Helge Balk ◽  
Gideon Gal ◽  
Brent T. Boscarino ◽  
...  

We measured acoustic backscattering from Mysis relicta , a common invertebrate in northern lakes, using five frequencies (38, 120, 200, 430, and 710 kHz). Acoustic backscattering from mysids was highest at 430 kHz and lowest at 38 kHz (19 dB lower). Maximum difference between the four other frequencies was 5.2 dB. Mysid target strength (TS) ranged from –80.1 dB at 430 kHz to –99.4 dB at 38 kHz (12 mm average length, range 5–21 mm). A theoretical scattering model (Stanton’s fluid-like, bent-cylinder model) predicted TS within 0.3–1.9 dB of observed TS for the different frequencies. The detection range was lowest at 38 and 710 kHz and greatest at 120 and 200 kHz. Fish were common above the mysid layer and produced higher acoustic backscattering at 38 kHz than at the other frequencies. A combination of 38 kHz and 120 or 200 kHz provides a strong contrast between mysid and fish acoustic backscattering that would help separate these groups using acoustic data.


2015 ◽  
Vol 20 (2) ◽  
pp. 61 ◽  
Author(s):  
Henry M Manik

Underwater acoustic sampling techniques provide an advantage over traditional net-sampling for zooplankton research. The research presents a methodology for extracting both biological and physical information from high frequency sonar. These methods can easily provide the information that will improve our understanding of the spatial and temporal distribution of zooplankton. Measured acoustic data converted into biological organisms and numerical physics-based scattering models were used in this research. The numerical backscattering process was modeled using the Distorted-Wave Born Approximation (DWBA) to predict the amount of sound scattered by a weakly scattering animal. Both acoustic measurement and DWBA modeled scattering patterns showed that acoustic scattering levels are highly dependent on zooplankton orientation. The acoustic backscattering from zooplankton depends on the material properties (i.e. the sound speed and density of the zooplankton), the shape and size, and the orientation relative to the incident acoustic wave. DWBA model significantly improve the accuracy and precision of zooplankton acoustic surveys. Zooplankton data measurement and DWBA model analysis provide a basis for future acoustical studies.


Sign in / Sign up

Export Citation Format

Share Document