On the relation between the size and chemical composition of aerosol particles and their optical properties

2001 ◽  
Vol 35 (30) ◽  
pp. 5053-5058 ◽  
Author(s):  
A Molnár ◽  
E Mészáros
2020 ◽  
Vol 10 (23) ◽  
pp. 8637
Author(s):  
Junshik Um ◽  
Seonghyeon Jang ◽  
Young Jun Yoon ◽  
Seoung Soo Lee ◽  
Ji Yi Lee ◽  
...  

Among many parameters characterizing atmospheric aerosols, aerosol mass extinction efficiency (MEE) is important for understanding the optical properties of aerosols. MEE is expressed as a function of the refractive indices (i.e., composition) and size distributions of aerosol particles. Aerosol MEE is often considered as a size-independent constant that depends only on the chemical composition of aerosol particles. The famous Malm’s reconstruction equation and subsequent revised methods express the extinction coefficient as a function of aerosol mass concentration and MEE. However, the used constant MEE does not take into account the effect of the size distribution of polydispersed chemical composition. Thus, a simplified expression of size-dependent MEE is required for accurate and conventional calculations of the aerosol extinction coefficient and also other optical properties. In this study, a simple parameterization of MEE of polydispersed aerosol particles was developed. The geometric volume–mean diameters of up to 10 µm with lognormal size distributions and varying geometric standard deviations were used to represent the sizes of various aerosol particles (i.e., ammonium sulfate and nitrate, elemental carbon, and sea salt). Integrating representations of separate small mode and large mode particles using a harmonic mean-type approximation generated the flexible and convenient parameterizations of MEE that can be readily used to process in situ observations and adopted in large-scale numerical models. The calculated MEE and the simple forcing efficiency using the method developed in this study showed high correlations with those calculated using the Mie theory without losing accuracy.


2010 ◽  
Vol 3 (2) ◽  
pp. 735-768
Author(s):  
B. Aouizerats ◽  
O. Thouron ◽  
P. Tulet ◽  
M. Mallet ◽  
L. Gomes ◽  
...  

Abstract. Obtaining a good description of aerosol optical properties for a physically and chemically complex evolving aerosol is computationally very expensive at present. The goal of this work is to propose a new numerical module computing the optical properties for complex aerosol particles at low numerical cost so that it can be implemented in atmospheric models. This method aims to compute the optical properties online as a function of a given complex refractive index deduced from the aerosol chemical composition and the size parameters corresponding to the particles. The construction of look-up tables from the imaginary and the real part of the complex refractive index and size parameters will also be explained. This approach is validated for observations acquired during the EUCAARI campaign on the Cabauw tower during May 2008 and its computing cost is also estimated. These comparisons show that the module manages to reproduce the scattering and absorbing behaviour of the aerosol during most of the fifteen-day period of observation with a very cheap computationally cost.


2010 ◽  
Vol 3 (2) ◽  
pp. 553-564 ◽  
Author(s):  
B. Aouizerats ◽  
O. Thouron ◽  
P. Tulet ◽  
M. Mallet ◽  
L. Gomes ◽  
...  

Abstract. Obtaining a good description of aerosol optical properties for a physically and chemically complex evolving aerosol is computationally very expensive at present. The goal of this work is to propose a new numerical module computing the optical properties for complex aerosol particles at low numerical cost so that it can be implemented in atmospheric models. This method aims to compute the optical properties online as a function of a given complex refractive index deduced from the aerosol chemical composition and the size parameters corresponding to the particles. The construction of look-up tables from the imaginary and the real part of the complex refractive index and size parameters will also be explained. This approach is validated for observations acquired during the EUCAARI (European integrated project on aerosol cloud climate air quality interactions) campaign on the Cabauw tower during May 2008 and its computing cost is also estimated. These comparisons show that the module manages to reproduce the scattering and absorbing behaviour of the aerosol during most of the fifteen-day period of observation with a very cheap computationally cost.


1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


2008 ◽  
Vol 42 (25) ◽  
pp. 6335-6350 ◽  
Author(s):  
Meinrat O. Andreae ◽  
Otmar Schmid ◽  
Hong Yang ◽  
Duli Chand ◽  
Jian Zhen Yu ◽  
...  

2005 ◽  
Vol 5 (3) ◽  
pp. 767-779 ◽  
Author(s):  
T. Petäjä ◽  
V.-M. Kerminen ◽  
K. Hämeri ◽  
P. Vaattovaara ◽  
J. Joutsensaari ◽  
...  

Abstract. Hygroscopicity (i.e. water vapour affinity) of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulphur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility) resembled that of particles produced in the local or semi-regional ambient conditions.


Sign in / Sign up

Export Citation Format

Share Document