Plastic deformation behaviour and operative slip systems in Ni3Nb single crystals

2000 ◽  
Vol 48 (7) ◽  
pp. 1469-1480 ◽  
Author(s):  
K Hagihara ◽  
T Nakano ◽  
Y Umakoshi
2002 ◽  
Vol 753 ◽  
Author(s):  
N. L. Oka moto ◽  
M. Kusakari ◽  
K. Tanaka ◽  
H. Inui ◽  
M. Yamaguchi ◽  
...  

ABSTRACTCoefficients of thermal expansion (CTE), elastic constants and plastic deformation behaviors of single crystals of ZrB2, which possesses a hexagonal layered structure where pure Zr and pure B atomic planes stack alternatively along the c-axis, have been investigated in wide temperature ranges. While the observed elastic constants indicate highly anisotropic nature of atomic bonding being consistent with the layered structure, the observed CTE values are rather isotropic. Two operative slip systems, (0001)<1120> and on {1100}<1123>, are identified in compression tests. The observed plastic behaviors are discussed in the light of the deduced anisotropy in atomic bonding.


2003 ◽  
Vol 51 (9) ◽  
pp. 2623-2637 ◽  
Author(s):  
K. Hagihara ◽  
T. Nakano ◽  
Y. Umakoshi

2005 ◽  
Vol 127 (3) ◽  
pp. 629-637 ◽  
Author(s):  
Nagaraj K. Arakere ◽  
Shadab Siddiqui ◽  
Shannon Magnan ◽  
Fereshteh Ebrahimi ◽  
Luis E. Forero

Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e., plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g., cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers [Rice, J. R., 1987, Mech. Mater. 6, pp. 317–335; Rice, J. R., and Saeedvafa, M., 1987, J. Mech. Phys. Solids 36, pp. 189–214; Saeedvafa, M., and Rice, J. R., 1988; ibid., 37, pp. 673–691; Rice, J. R., Hawk, D. E., Asaro, R. J., 1990, Int. J. Fract. 42, pp. 301–321; Saeedvafa, M., and Rice, J. R., 1992, Modell. Simul. Mater. Sci. Eng. 1, pp. 53–71] and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a fcc single-crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of three-dimensional (3D) stress fields and evolution of slip sector boundaries near notches in fcc single-crystal PWA1480 tension test specimens and demonstrate that a 3D linear elastic finite element model, which includes the effect of material anisotropy, is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near fcc single-crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single-crystal notches.


1988 ◽  
Vol 133 ◽  
Author(s):  
Y. Q. Sun ◽  
P. M. Hazzledine

ABSTRACTDislocations in single crystals of Ni3(Al, Ti) deformed at temperatures above the peak in flow stress have been studied by the TEM “weak-beam” technique. <110> dislocations on the primary cube plane are mostly of edge character, and they have been observed to transform into “super” Lomer- Cottrell locks. <100> dislocations, by contrast, are principally of 45° character. They are believed also to become immobilized by dissociation on {111} planes. Properties of both dislocations on cube planes are discussed and are related to the deformation behaviour of L12ordered intermetallic alloys.


Sign in / Sign up

Export Citation Format

Share Document