Mechanical and thermal properties of single crystals of ZrB2

2002 ◽  
Vol 753 ◽  
Author(s):  
N. L. Oka moto ◽  
M. Kusakari ◽  
K. Tanaka ◽  
H. Inui ◽  
M. Yamaguchi ◽  
...  

ABSTRACTCoefficients of thermal expansion (CTE), elastic constants and plastic deformation behaviors of single crystals of ZrB2, which possesses a hexagonal layered structure where pure Zr and pure B atomic planes stack alternatively along the c-axis, have been investigated in wide temperature ranges. While the observed elastic constants indicate highly anisotropic nature of atomic bonding being consistent with the layered structure, the observed CTE values are rather isotropic. Two operative slip systems, (0001)<1120> and on {1100}<1123>, are identified in compression tests. The observed plastic behaviors are discussed in the light of the deduced anisotropy in atomic bonding.

2011 ◽  
Vol 1295 ◽  
Author(s):  
Yuji Ochiai ◽  
Kyosuke Kishida ◽  
Katsushi Tanaka ◽  
Haruyuki Inui

ABSTRACTElastic properties, thermal expansion and deformation behavior of Cr5Si3 with the D8m structure were investigated using single crystals. From the values of Cauchy pressures as well as the ratio of the polycrystalline bulk modulus (B) to shear moduls (G) estimated from single-crystal elastic constants (cij), deformation behavior of Cr5Si3 is expected to be relatively brittle compared to Mo5Si3 with the same crystal structure. However, plastic deformation of Cr5Si3 is confirmed above 900 ~ 1100 °C depending on the loading axis orientations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenghao Chen ◽  
Bhaskar Paul ◽  
Sanjib Majumdar ◽  
Norihiko L. Okamoto ◽  
Kyosuke Kishida ◽  
...  

AbstractThe plastic deformation behavior of single crystals of two transition-metal diborides, ZrB2 and TiB2 with the AlB2 structure has been investigated at room temperature as a function of crystal orientation and specimen size by micropillar compression tests. Although plastic flow is not observed at all for their bulk single crystals at room temperature, plastic flow is successfully observed at room temperature by the operation of slip on {1$${\bar{1}}$$ 1 ¯ 00}<11$${\bar{2}}$$ 2 ¯ 3> in ZrB2 and by the operation of slip on {1$${\bar{1}}$$ 1 ¯ 00}<0001> and {1$${\bar{1}}$$ 1 ¯ 00}<11$${\bar{2}}$$ 2 ¯ 0> in TiB2. Critical resolve shear stress values at room temperature are very high, exceeding 1 GPa for all observed slip systems; 3.01 GPa for {1$${\bar{1}}$$ 1 ¯ 00}<11$${\bar{2}}$$ 2 ¯ 3> slip in ZrB2 and 1.72 GPa and 5.17 GPa, respectively for {1$${\bar{1}}$$ 1 ¯ 00}<0001> and {1$${\bar{1}}$$ 1 ¯ 00}<11$${\bar{2}}$$ 2 ¯ 0> slip in TiB2. The identified operative slip systems and their CRSS values are discussed in comparison with those identified in the corresponding bulk single crystals at high temperatures and those inferred from micro-hardness anisotropy in the early studies.


1990 ◽  
Vol 213 ◽  
Author(s):  
C. Steve Chang ◽  
D. P. Pope

AbstractHigh temperature compression tests were performed on Cr 3Si single crystalline and poly crystalline samples. Slip systems were determined to be of the {001}<010> type based on an analysis of slip traces and Laue spots. Single crystals show significant compressive ductility at temperatures above 0.7Tm. The implication of cube slip on the ductility of A15-type intermetallic compounds is discussed.


2000 ◽  
Vol 646 ◽  
Author(s):  
Kazuhiro Ito ◽  
Hironori Yoshioka ◽  
Masaharu Yamaguchi

ABSTRACTMoSi2 has a great potential for very high temperature structural applications. Plastic deformation of MoSi2 single crystals with the C11b structure is extremely anisotropic. It is caused by non-Schmid behavior of slip on {013}<331> with the higher CRSS values for orientations closer to [001]. In order to provide better understanding of key factors on such non-Schmid behavior in MoSi2 (c/a=2.45), we chose PdZr2 with a c/a axial ratio higher than 3 (c/a=3.30) and characterized the plastic deformation. Compression tests were conducted at various temperatures along [001], [010] and [110] axes. Slip on {013}<100> has the shortest Burgers vector and the largest interplanar spacing in PdZr2 and was observed to be activated for [110] with the lowest CRSS. While slip on {013}<331> can be activated even at -196°C for [001]. Although {013}<331> slip has the same Schmid factors for [001] and [010], the yield stress of the [010]-oriented crystals is about twice higher than that of the [001]-oriented crystals. Thus non-Schmid behavior of slip on {013}<331> is also observed in PdZr2, and the manner is opposite to that in MoSi2. Plastic anisotropy in the C11b structure will be discussed in terms of the c/a axial ratio.


2011 ◽  
Vol 1312 ◽  
Author(s):  
Muhammad E. Hossain ◽  
Mohammad K. Hossain ◽  
Mahesh Hosur ◽  
Shaik Jeelani

ABSTRACTIn this study, different dispersion techniques such as sonication at high frequency, mechanical mixing, and magnetic stirring methods were employed to infuse 0.1 to 0.4 wt.% carbon nanofiber (CNF) into polyester matrix to study the influence of CNF on mechanical and thermal properties of the polyester nanocomposites. Dispersion of CNF studied using scanning electron microscopy (SEM) micrographs revealed excellent dispersion of CNF using sonication when 0.2 wt.% CNF was mixed in polyester resulting in enhanced mechanical response. On the other hand, agglomerations were observed in samples prepared with other mixing methods. Polyester with 0.2 wt.% CNF samples prepared by sonication resulted in 88% and 16% increase in flexural strength and modulus, respectively, over neat samples. Quasi-static compression tests showed similar increasing trend with addition of 0.2 wt.% CNF. Dynamic mechanical analysis (DMA) showed 35% and 5 °C improvement in the storage modulus and glass transition temperature (Tg), respectively, in the 0.2 wt.% loaded samples. Thermal mechanical analysis (TMA) performed on neat and samples with 0.2 wt.% CNF showed lower coefficient of thermal expansion (CTE) in nanophased sample compared to neat. Fracture morphology evaluated using SEM revealed relatively rougher surface in CNF-loaded polyester compared to neat as a result of better interaction between fiber and matrix due to the presence of CNF.


Author(s):  
S. Haussühl ◽  
J. Schreuer

AbstractLarge single crystals of optical quality of (±)-tris(ethylenediamine)cobalt(III) nitrate have been grown from aequeous solutions. An X-ray structure analysis yielded space groupPyroelectric, dieletric, piezoelectric and elastic constants have been determined at room temperature. Additionally, we have studied the coefficients of thermal expansion and the thermoelastic constants in the range between 270 K and 350 K. The structure exhibits a nearly trigonal symmetry around the [unk]


Sign in / Sign up

Export Citation Format

Share Document